Research Menu

The Signal Transduction Program is exploring the molecular signals within and between cells that drive cancer. These researchers are developing innovative new models for human tumors and advanced imaging technology with a goal of identifying potential “druggable” targets and mechanisms of drug resistance in cancer. Current research is focused on identifying and targeting the signaling mechanisms and tumor-host interactions that drive cancer.

Program Co-leaders

The Signal Transduction Program has two major overarching themes: 1) Identifying and targeting signaling in cancer; and 2) Characterizing and attacking tumor-host interactions driving cancer. In addition, the Signal Transduction Program is working to develop improved models of cancer. Program members include experts who bring an in-depth understanding of different families of signaling proteins, integrated with investigators who have expertise in cutting-edge technologies and systems. As such, the program generates basic discoveries that can drive the development of new cancer therapies.

Extensive collaborations among Signal Transduction Program members and other CSHL Cancer Center Programs have combined novel model systems of cancer, RNA interference, CRISPR, and state-of-the-art molecular/cellular and biochemical/proteomics approaches. Most Signal Transduction Program members also have clinical collaborators, predominately with investigators at Northwell Health. This highly collaborative and innovative environment has led to breakthroughs in our understanding of the signaling networks and immune interactions that drive cancer.

Building publication list.
Semir Beyaz

Semir Beyaz

Are you really what you eat? Our goal is to uncover the precise mechanisms that link nutrition to organismal health and disease states at the cellular and molecular level. A particular focus in our lab is to understand how dietary perturbations affect the immune system and contribute to the risk of diseases that are associated with immune dysfunction such as cancer.

Mikala Egeblad

Mikala Egeblad

Cancer cells are surrounded by immune cells, blood vessels, chemical signals and a support matrix – collectively, the tumor microenvironment. Most microenvironments help tumors grow and metastasize, but some can restrict tumors. My lab studies how to target the bad microenvironments and support the good ones to combat cancer.

Douglas Fearon

Douglas Fearon

I’m studying how to harness the power of the immune system to fight cancer. Our underlying premise is that the microenvironment within a tumor suppresses the immune system. We have found a way to eliminate this suppression in the mouse model of pancreatic cancer, which has led to development of a drug for human pancreatic cancer that will enter phase 1 clinical trials in 2015.

Robert Maki

Robert Maki

With joint appointments at CSHL and Northwell Health, I am working to expand clinical cancer research at our institutions to provide new treatments for patients as well as greater insight into the biology of this complex set of diseases. In my own research, I am collaborating on research in soft-tissue and bone sarcomas to better understand the cancer microenvironment and epigenetics, targeting molecular weaknesses to halt cancer growth.

Darryl Pappin

Darryl Pappin

Our genome can encode hundreds of thousands of different proteins, the molecular machines that do the work that is the basis of life. I use proteomics, a combination of protein chemistry, mass spectrometry and informatics, to identify precisely which proteins are present in cells - cells from different tissues, developmental stages, and disease states.

Raffaella Sordella

Raffaella Sordella

Two challenges in cancer biology guide my work: first, how do tumors become addicted to certain gene products, and second, how do tumors develop resistance to anti-cancer drugs. I focus on the epidermal growth factor receptor (EGFR), which is both addictive when mutated and a common source of drug resistance. We are also identifying new targets for the treatment of lung cancer.

Nicholas Tonks

Nicholas Tonks

Cells must constantly react to what is happening around them, adapting to changes in neighboring cells or the environment. I study the signals that cells use to exchange information with their surroundings. Our group is finding drugs that target these signals and thus can treat diabetes, obesity, cancer, and autism spectrum disorders.

Lloyd Trotman

Lloyd Trotman

We have recently developed the first genetic mouse model for therapy and analysis of metastatic prostate cancer. Now we can test if and how modern concepts of cancer evolution can outperform the 80-year-old standard of care - hormone deprivation therapy - and turn lethal prostate cancer into a curable disease.

David Tuveson

David Tuveson

Pancreatic cancer is an extremely lethal malignancy. On average, patients who are diagnosed with pancreatic cancer succumb to the disease within 6 months. Research is the only way to defeat pancreatic cancer. My lab is making progress toward finding a cure by detecting the disease earlier and designing novel therapeutic approaches.

Linda Van Aelst

Linda Van Aelst

Normal cell function relies on coordinated communication between all the different parts of the cell. These communication signals control what a cell does, what shape it takes, and how it interacts with other cells. I study these signaling networks to understand how they guard against cancer and neurological disorders.

Johannes Yeh

Johannes Yeh

Studies the creation of engineered biologics such as antibodies, proteins and peptides, for therapeutics and translational medicine. The lab employs protein engineering and chemical biology approaches to develop therapeutic biologics acting on cell signaling machineries in order to abrogate pathological cellular behavior. He is currently the Director of CSHL Cancer Center Antibody Shared Resource- a collaborative resource for high quality antibody development.

Hongwu Zheng

Hongwu Zheng

I study a type of brain cancer known as malignant glioma, which differs from healthy tissue by a small number of defining characteristics. By forcing glioma cells to adopt these healthy traits, we can stop tumor growth. My group searches for therapeutic ways to force this transition.