Research Menu

The Stanley Institute for Cognitive Genomics is dedicated to genetics and neuroscience research that will enhance our understanding of schizophrenia, bipolar disorder, major depression and other cognitive disorders. The goal is to improve the diagnosis and treatment of these disorders.

Work at the Stanley Institute for Cognitive Genomics at CSHL is funded by gifts from Theodore and Vada Stanley and grants from the
National Institute of Mental Health.

Stanley InstituteSchizophrenia, bipolar disorder and major recurrent depression are cognitive disorders that create an enormous burden on patients, their families and our health care system.

Because vulnerability to these disorders tends to run in families, genetics is a factor; however the specific genetic components involved and how they impact symptoms or treatments of these disorders has yet to be fully worked out.  With recent advances in genomic technologies, CSHL is now poised to unravel the genetic complexity of cognitive disorders. Simultaneously, advanced technologies in neuroscience are allowing CSHL researchers to understand how the brain assembles neural circuits to control behaviors and cognitive processes like attention and decision-making. At the CSHL Stanley Institute for Cognitive Genomics, these two approaches – genetics and neuroscience – are integrated to form a dual-strategy aimed at improving the diagnosis and treatment of schizophrenia, bipolar disorder, depression and other cognitive disorders.

Researchers at CSHL began working on the genetics of cognitive disorders in 2005 following a generous gift from Ted and Vada Stanley. Under the leadership of James Watson, this effort grew substantially in 2007 with a gift from the Stanley’s to establish the Stanley Institute for Cognitive Genomics. At that time, new DNA sequencing technologies, called “Next Generation Sequencing” were being developed. CSHL Professor and sequencing pioneer W. Richard McCombie was one of the first to apply this technology to study the genetics of cognitive disorders putting the Stanley Institute on the map.

With the goal of improving diagnosis and the potential for personalized therapy, the Stanley Center began applying state-of-the-art genomics technologies to identify genetic variants contributing to schizophrenia, bipolar disorder and major depression. Together with collaborators in the U.S., Scotland, Ireland, Pakistan and Australia, CSHL focused first on sequencing the complete genomes or protein coding regions of the genomes of families that had many members suffering from mental illness. One of the key findings demonstrated an overlap among genes contributing to schizophrenia and autism. CSHL also showed a link between the genes involved in the modification of chromatin structure and schizophrenia.

In 2014, with continuing support from Ted and Vada Stanley, the Stanley Institute incorporated the efforts of CSHL neuroscientists focused on understanding how brain circuits assemble and function. Like the genetics group, neuroscientists are developing and applying new technologies, including sophisticated brain mapping technologies and novel behavioral paradigms for studying decision making, attention and other processes. Stanley Institute neuroscientists are now studying the function of genes that have been implicated in cognitive disorders.

Building publication list.
Hiro Furukawa

Hiro Furukawa

The nervous system transmits information by passing chemical signals from one nerve cell to the others. This signal transmission relies on a variety of proteins to receive and transmit the chemical signals. My group studies the structure and function of neurotransmitter receptors and ion channels that regulate fundamental neuronal activities.

Jesse Gillis

Jesse Gillis

Of the tens of thousand of protein-coding genes in the human genome, only a small portion have an experimentally defined function. For the rest, how can we determine what they do? My lab develops computational predictions based on co-expression networks. We are applying our predictions to understand neuropsychiatric disorders.

Z. Josh Huang

Z. Josh Huang

Studies the development and organization of neural circuits in the mouse cerebral cortex. His team uses an integrated approach to identify neuronal cell types and discover how they interact to process information and guide behavior, focusing on the motor cortex that controls forelimb movement. His studies of inhibitory interneurons, such as chandelier cells, have implications for understanding schizophrenia and autism.

Adam Kepecs

Adam Kepecs

My lab studies the neurobiological principles underlying cognition and decision-making. Using state-of-the-art technologies, we interrogate neural circuits in rodents as they perform a task. We validate our findings with analogous tasks in humans. We hope to define the neural circuits underlying decisions that will inform the development of new therapies for psychiatric diseases.

Bo Li

Bo Li

My group studies the neural circuits underlying cognitive function and dysfunction as they relate to anxiety, depression, schizophrenia and autism. We use sophisticated technologies to manipulate specific neural circuits in the rodent brain to determine their role in behavior. We are interested in changes in synaptic strength that may underlie mental disorders.

Gholson Lyon

Gholson Lyon

My group focuses on human genetics and genomic medicine, with an emphasis on diseases with severe neuropsychiatric manifestations. We collect large family pedigrees and use whole-genome sequencing to define mutations that correlate with the syndromes. We then undertake detailed functional characterization of these mutations to discover fundamental new biology.

W. Richard McCombie

W. Richard McCombie

Over the last two decades, revolutionary improvements in DNA sequencing technology have made it faster, more accurate, and much cheaper. We are now able to sequence up to 10 trillion DNA letters in just one month. I harness these technological advancements to assemble genomes for a variety of organisms and probe the genetic basis of neurological disorders, including autism and schizophrenia, better understand cancer progression and understand the complex structures of the genomes of higher plants.

Alea A. Mills

Alea A. Mills

Cells employ stringent controls to ensure that genes are turned on and off at the correct time and place. Accurate gene expression relies on several levels of regulation, including how DNA and its associated molecules are packed together. I study the diseases arising from defects in these control systems, such as aging and cancer.

Pavel Osten

Pavel Osten

To understand what’s going wrong in illnesses like autism and schizophrenia, we need to know more about how neural circuits are connected in the healthy brain. We’ve developed advanced imaging methods to draw the first whole-brain activation map in the mouse. Now we’re applying that technology to study changes in brain activity in mice whose behavior models human autism and schizophrenia.

Jessica Tollkuhn

Jessica Tollkuhn

I am interested in how transient events during development program neurons to take on a specific identity and function. More specifically, I am studying how estrogen and testosterone generate sex differences in the brain and behavior.