Research Menu
W. Richard McCombie

W. Richard McCombie

Professor

Ph.D., University of Michigan, 1982

mccombie@cshl.edu | (516) 422-4083

McCombie Lab Website

Over the last two decades, revolutionary improvements in DNA sequencing technology have made it faster, more accurate, and much cheaper. We are now able to sequence up to 10 trillion DNA letters in just one month. I harness these technological advancements to assemble genomes for a variety of organisms and probe the genetic basis of neurological disorders, including autism and schizophrenia, better understand cancer progression and understand the complex structures of the genomes of higher plants.

The insights of W. Richard McCombie and colleagues have led to the introduction and optimization of novel methods of high-throughput genome sequencing. His team has made it possible to catalog variation among individual organisms in a way that would have been unthinkable 10 years ago. They have brought online a new generation of Illumina sequencers and optimized their function to a level at which eight to 10 trillion DNA bases can be sequenced in a month. McCombie’s team has been involved in international efforts culminating in genome sequences for maize, rice, bread wheat—three of the world’s most important food crops. They have also had an important role in projects to sequence the flowering plant Arabidopsis thaliana (the first plant genome sequence), the fission yeast Schizosaccharomyces pombe, as well as the human genome and other important genomes. McCombie’s group is currently involved in several important projects to resequence genes in patient samples that are of special interest to human health, including DISC1 (a strong candidate gene for schizophrenia), looking for genetic variants implicated in bipolar illness and major recurrent depression.  They are also looking for genes, that contribute to cancer progression using whole genome sequencing or a method called exome sequencing which they developed with Greg Hannon to look at mutations in the regions of the genome that code for proteins.

Building publication list.