Mikala Egeblad

Mikala Egeblad

Cancer Center Program Co-Leader

Ph.D., University of Copenhagen and the Danish Cancer Society, 2000

egeblad@cshl.edu | (516) 367-6852

Egeblad Lab Website

Cancer cells are surrounded by immune cells, blood vessels, chemical signals and a support matrix—collectively, the tumor microenvironment. Most microenvironments help tumors grow and metastasize, but some can restrict tumors. My lab studies how to target the bad microenvironments and support the good ones to combat cancer.

Mikala Egeblad and colleagues study cancer and, in particular, the microenvironment in which the cancer cells arise and live. Solid tumors are abnormally organized tissues that contain not only cancer cells, but also various other stromal cell types and an extracellular matrix, and these latter components constitute the microenvironment. Communications between the different components of the tumor influence its growth, its response to therapy, and its ability to metastasize. Among the tumor-associated stromal cells, the lab’s main focus is on myeloid-derived immune cells, a diverse group of cells that can enhance angiogenesis and metastasis and suppress the cytotoxic immune response against tumors. Egeblad is interested in how different types of myeloid cells are recruited to tumors and how their behaviors—for example, their physical interactions with cancer cells and other immune cells—influence cancer progression, including metastasis. The Egeblad lab studies the importance of the myeloid cells using mouse models of breast and pancreatic cancer and real-time imaging of cells in tumors in live mice. This enables them to follow the behaviors of and the interactions between cancer and myeloid cells in tumors during progression or treatment. This technique was instrumental when the lab showed that cancer drug therapy can be boosted by altering components of the tumor microenvironments, specifically reducing either matrix metalloproteinases (enzymes secreted by myeloid cells) or chemokine receptors (signal receptors on myeloid cells). Most recently, the Egeblad lab has showed that when a specific type of myeloid cell, called neutrophil, is activated during inflammation it can awaken sleeping cancer to cause cancer recurrence. The neutrophils do so by forming so-called neutrophil extracellular traps, structures of extracellular DNA and these alter the extracellular matrix surrounding the sleeping cancer cells to provide a wake-up signal. 

Fein, Miriam R and He, Xue-Yan and Almeida, Ana S and Bružas, Emilis and Pommier, Arnaud and Yan, Ran and Eberhardt, Anaïs and Fearon, Douglas T and Van Aelst, Linda and Wilkinson, John Erby and Dos Santos, Camila O and Egeblad, Mikala (2020) Cancer cell CCR2 orchestrates suppression of the adaptive immune response.. Journal of Experimental Medicine, 217(10) Rockefeller University Press.

Middleton, EA and He, X.-Y. and Denorme, F and Campbell, RA and Ng, D. and Salvatore, S. and Mostyka, M and Baxter-Stoltzfus, A. and Borczuk, A. and Loda, M. and Cody, MJ and Manne, BK and Portier, I and Harris, E and Petrey, AC and Beswick, EJ and Caulin, AF and Iovino, A and Abegglen, LM and Weyrich, AS and Rondina, MT and Egeblad, M. and Schiffman, JD and Con Yost, C (2020) Neutrophil Extracellular Traps (NETs) Contribute to Immunothrombosis in COVID-19 Acute Respiratory Distress Syndrome. Blood,

Barnes, B.J. and Adrover, J.M. and Baxter-Stoltzfus, A. and Borczuk, A. and Cools-Lartigue, J. and Crawford, J.M. and DaBler-Plenker, J. and Guerci, P. and Huynh, C. and Knight, J.S. and Loda, M. and Looney, M.R. and McAllister, F. and Rayes, R. and Renaud, S. and Rousseau, S. and Salvatore, S. and Schwartz, R.E. and Spicer, J.D. and Yost, C.C. and Weber, A. and Zuo, Y. and Egeblad, M. (2020) Targeting Potential Drivers of COVID-19: Neutrophil Extracellular Traps. J Exp Med, 217(6) pp. e20200652.

Albrengues, J. and Shields, M. A. and Ng, D. and Park, C. G. and Ambrico, A. and Poindexter, M. E. and Upadhyay, P. and Uyeminami, D. L. and Pommier, A. and Kuttner, V. and Bruzas, E. and Maiorino, L. and Bautista, C. and Carmona, E. M. and Gimotty, P. A. and Fearon, D. T. and Chang, K. and Lyons, S. K. and Pinkerton, K. E. and Trotman, L. C. and Goldberg, M. S. and Yeh, J. T. and Egeblad, M. (2018) Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science, 361(6409)

Park, J. and Wysocki, R. W. and Amoozgar, Z. and Maiorino, L. and Fein, M. R. and Jorns, J. and Schott, A. F. and Kinugasa-Katayama, Y. and Lee, Y. and Won, N. H. and Nakasone, E. S. and Hearn, S. A. and Kuttner, V. and Qiu, J. and Almeida, A. S. and Perurena, N. and Kessenbrock, K. and Goldberg, M. S. and Egeblad, M. (2016) Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med, 8(361) pp. 361ra138.

Additional materials of the author at
CSHL Institutional Repository