
Alea A. Mills
Professor
Cancer Center Member
Ph.D., University of California, Irvine, 1997
mills@cshl.edu | (516) 367-6910
Cells employ stringent controls to ensure that genes are turned on and off at the correct time and place. Accurate gene expression relies on several levels of regulation, including how DNA and its associated molecules are packed together. I study the diseases arising from defects in these control systems, such as aging and cancer.
Alea Mills is studying genetic pathways important in cancer, aging, and autism, identifying the genetic players and determining how aberrations in their functions culminate in human disease. Through innovative use of a technique called “chromosome engineering,” the Mills group discovered that one of the most common genetic alterations in autism—deletion of a 27-gene cluster on chromosome 16—causes autism-like features in mice. These autism-like movement impairments can be identified just days after birth, suggesting that these features could be used to diagnose autism. Mills has also used chromosome engineering to identify a tumor suppressor gene that had eluded investigators for three decades. The gene, called Chd5, was shown by Mills to regulate an extensive cancer-preventing network. This year, the Mills lab uncovered how Chd5 acts as a tumor suppressor: It binds to a protein found within chromatin to turn specific genes on or off, halting cancer progression. The epigenetic role of Chd5 in development, cancer, and stem-cell maintenance is currently being investigated. The Mills lab is also studying p63 proteins, which regulate development, tumorigenesis, cellular senescence, and aging in vivo. They succeeded in halting the growth of malignant tumors by turning on production of one of the proteins encoded by the p63 gene, called TAp63. TAp63 also exerts other protective effects. This year, the Mills lab generated a mouse model which allowed them to find that TAp63 is required to prevent a genetic disorder, known as EEC (ectrodactyly-ectodermal dysplasia cleft lip/palate syndrome), which is characterized by a cleft palate and major deformities of the skin and limbs in infants. In addition, they recently discovered that a different version of p63, called ΔNp63, reprograms stem cells of the skin to cause carcinoma development—the most prevalent form of human cancer. Modulation of these proteins may offer new ways to treat human malignancies in the future.
Woman of the Year in Health/Medicine – 2012
CSHL graduate student wins HHMI fellowship
August 15, 2019
WSBS student David Johnson won a 2019 Gilliam Fellowships for Advanced Study for leadership and diversity in science.
What does sight mean to a cancer researcher?
February 26, 2019
Postdoc Leah Banks discusses vision’s role in cancer research, and how nearly losing her sight gave her a new perspective on her work.
Path to cancer in the brain set by protein CHD5
September 14, 2018
Researchers find that protein keeps neural stem cells from activating too soon and hindering brain development
Portrait of a Neuroscience Powerhouse
April 27, 2018
A relatively small neuroscience group at CSHL is having an outsized impact on a dynamic and highly competitive field
Realizing a dream: How a program for undergraduates placed me at the center of CRISPR research
August 16, 2017
Hands-on experience using CRISPR and access to top scientists from around the world who are pioneering its use made this a memorable summer for.
Partners Profile: High School Senior Tamanna Bhatia on becoming a scientist
January 26, 2016
An interview with Partners for the Future participant Tamanna Bhatia and her work in Alea Mill's lab studying cancer cells.
12th annual LI2DAY Walk raises over $400,000
September 1, 2015
The $19,000 donation received by CSHL will support breast cancer research in the laboratory of Professor Alea Mills.
Male infertility: It’s all about the package
May 13, 2014
Scientists find a protein that controls DNA organization during sperm development
CSHL geneticists solve mystery of EEC Syndrome’s variable severity in children
June 14, 2013
By identifying a protein that acts as a genetic modifier, scientists at Cold Spring Harbor Laboratory (CSHL) have solved a mystery.
Cancer scientists determine mechanism of one of the most powerful tumor-suppressor proteins, Chd5
January 10, 2013
CSHL Professor Alea Mills explains what's so important about the Chd5 tumor suppressor and what her team has discovered about it.
