Research Menu
Stephen Shea

Stephen Shea

Associate Professor

Ph.D., University of Chicago, 2004

sshea@cshl.edu | (516) 367-8823

Shea Lab

When confronted with another individual, social animals use multiple sensory inputs ­ smells, sounds, sights, tastes, touches ­ to choose an appropriate behavioral response. My group studies how specific brain circuits support these natural communication behaviors and how disruptions in these circuits can lead to inappropriate use of social information, as in Autism Spectrum Disorders.

Stephen Shea’s lab studies the neural circuitry underlying social communication and decisions. He uses natural social communication behavior in mice as a model to understand circuits and processes that are evolutionarily conserved and therefore shared broadly across species, likely contributing to disorders such as autism. Shea and colleagues have examined how emotion and arousal enable mice, via their olfactory systems, to store memories of other individuals and of related social signals. The team has exploited the intimate relationship between memory and emotion to effectively create memories in anesthetized mice, allowing them unprecedented access to neurobiological processes that typically only occur during behavior. The lab has been making a detailed analysis of the changes in neural connections that underlie odor memory. The team is particularly focused on an enigmatic cell type (granule cells or GCs) that has long been hypothesized to be crucial for memories, but has resisted direct study. They have developed methods for recording, giving them the first glimpse of the dynamics of these cells while the animal is learning an odor. The results show unexpectedly complex population dynamics among the GCs that were independently predicted by a model of odor learning developed in Alexei Koulakov’s lab. The two labs are collaborating to discern how GC population activity gets integrated by olfactory bulb output neurons and to pinpoint the synaptic circuit that underlies this form of learning. In parallel, another member of the lab is using imaging techniques to determine how memories are stored among broad neuronal ensembles, at a different level of the system. Recently, the lab made a key breakthrough, developing the ability to record from GCs in awake animals and discovering that their activity is dramatically modulated by state of consciousness. Finally, the Shea lab completed a series of studies of a different form of social recognition: auditory recognition of pup vocalizations by their mothers. Through this research, they have shown that a mouse model of Rett syndrome exhibits deficits in communication and learning not unlike those in human patients. Grants from the Simons and Whitehall Foundations are allowing the lab to extend this work by directly linking these deficits to the action of the gene MeCP2 in the auditory cortex.

    Portrait of a Neuroscience Powerhouse

    Portrait of a Neuroscience Powerhouse

    April 27, 2018

    At noon every Tuesday from September through June, scenes from a revolution in neuroscience are playing out at Cold Spring Harbor Laboratory. Week after week, over 100 scientists cram themselves into a ground-floor meeting room in the Beckman Laboratory. It’s standing-room only as everyone in the Neuroscience Program settles in to hear details of the...


    In mouse model of Rett syndrome, research reveals how adult learning is impaired in females

    In mouse model of Rett syndrome, research reveals how adult learning is impaired in females

    January 18, 2017

    Cold Spring Harbor, NY — Neurodevelopmental disorders like autism very likely have their origin at the dawn of life, with the emergence of inappropriate connectivity between nerve cells in the brain. In one such disorder, Rett syndrome, the pathology is traceable to the failure of a specific gene, called MECP2. Today, a team at Cold...


    A new way to fear: Lady lab rats raise important questions for behavioral research

    A new way to fear: Lady lab rats raise important questions for behavioral research

    January 12, 2016

    Not all lab rats, it seems, are created equal. When Tina Gruene of Northeastern University’s Shansky Lab noticed that her female rat subjects often reacted very differently than males to conditioned fear, she knew she’d stumbled upon a very important quandary. In the past, female rats have been considered less reliable test subjects—largely due to...


    Research reveals first glimpse of a brain circuit that helps experience to shape perception

    Research reveals first glimpse of a brain circuit that helps experience to shape perception

    March 2, 2014

    For the first time, scientists monitor inhibitory neurons that link sense of smell with memory and cognition in mice Cold Spring Harbor, NY – Odors have a way of connecting us with moments buried deep in our past.  Maybe it is a whiff of your grandmother’s perfume that transports you back decades.  With that single...


Eckmeier, D. and Shea, S. D. (2014) Noradrenergic plasticity of olfactory sensory neuron inputs to the main olfactory bulb. Journal of Neuroscience, 34(46) pp. 15234-43.

Cazakoff, B. N. and Lau, B. Y. and Crump, K. L. and Demmer, H. S. and Shea, S. D. (2014) Broadly tuned and respiration-independent inhibition in the olfactory bulb of awake mice. Nature Neuroscience,

Shea, S. D. and Koch, H. and Baleckaitis, D. and Ramirez, J. M. and Margoliash, D. (2010) Neuron-Specific Cholinergic Modulation of a Forebrain Song Control Nucleus. Journal of Neurophysiology, 103(2) pp. 733-745.

Shea, S. D. and Katz, L. C. and Mooney, R. (2008) Noradrenergic induction of odor-specific neural habituation and olfactory memories. Journal of Neuroscience, 28(42) pp. 10711-9.

Lin, D. Y. and Shea, S. D. and Katz, L. C. (2006) Representation of Natural Stimuli in the Rodent Main Olfactory Bulb. Neuron, 50(6) pp. 937-949.

Additional materials of the author at
CSHL Institutional Repository