Newsstand Menu

Gene loss accelerates aging

dorsal back skin biopsies
Dorsal back skin biopsies from E17.5 control, p63-/-, and p63-ablated embryos (treated with mifepristone at E8.5) were stained with Dapi to show histology and visualize cellular senescence levels.
Print Friendly, PDF & Email

Researchers have discovered that the loss of a gene called p63 accelerates aging in mice. Similar versions of the gene are present in many organisms, including humans. Therefore, the p63 gene is likely to play a fundamental biological role in aging-related processes.

“To study how the p63 gene works, we devised a system for eliminating it from adult mouse tissues. What struck us right away was that these p63 deficient mice were aging prematurely,” says Alea Mills of Cold Spring Harbor Laboratory, who led the research.

Mice that are born without the p63 gene do not survive. Therefore, Mills had previously conducted extensive studies of mice that are born with only one copy of the gene. Still, these animals die at a young age. So to study p63 function in adults, Mills and her colleagues devised a sophisticated molecular genetic technique that enabled them to eliminate both copies of the gene from particular tissues—including skin and other multi-layered epithelial tissues—after the animals reached maturity.

The effects of premature aging observed in these p63 deficient mice were hair loss, reduced fitness and body weight, progressive curvature of the spine, and a shortened lifespan.

“Aging and cancer are two sides of the same coin. In one case, cells stop dividing and in the other, they can’t stop dividing. We suspect that having the right amount of the p63 protein in the right cells at the right time creates a balance that enables organisms to live relatively cancer-free for a reasonably long time,” says Mills, who adds that this is the first time the p63 gene has been implicated in aging.

“I first presented these results at a meeting in Tuscany. I don’t want to sound flippant, but if you have to grow old somewhere, that’s about as good a place as any to do it,” says Mills.

The study is published in the September issue of the journal Genes & Development (advance online publication August 17). The other researchers involved in the study were Scott Lowe, Ying Wu, Xuecui Guo, and first author William Keyes of Cold Spring Harbor Laboratory, and Hannes Vogel of Stanford University.

Written by: Communications Department | publicaffairs@cshl.edu | 516-367-8455

Stay informed

Sign up for our newsletter to get the latest discoveries, upcoming events, videos, podcasts, and a news roundup delivered straight to your inbox every month.

  Newsletter Signup

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. Home to eight Nobel Prize winners, the private, not-for-profit Laboratory employs 1,000 people including 600 scientists, students and technicians. The Meetings & Courses Program annually hosts more than 12,000 scientists. The Laboratory’s education arm also includes an academic publishing house, a graduate school and the DNA Learning Center with programs for middle, high school, and undergraduate students and teachers. For more information, visit www.cshl.edu

Principal Investigator

Alea A. Mills

Alea A. Mills

Professor
Cancer Center Member
Ph.D., University of California, Irvine, 1997

Tags