Core Course on Specialized Disciplines
Module 1: Quantitative Biology
Course Syllabus

Course Faculty
Instructors: Justin Kinney (lead)
Alex Dobin
Peter Koo
Adam Siepel
David McCandlish
Jon Preall
Hannah Meyer

Course TAs: Anna Posfai
Mahdi Kooshkbaghi

Lectures:
- September 8, Wednesday, 2pm-4pm, Kinney
 Statistics I
- September 10, Friday, 2pm-4pm, Kinney
 Statistics II
- September 15, Wednesday, 2pm-4pm, Kinney
 Statistics III
- September 16, Thursday, 2pm-4pm, Kinney
 Statistics IV
- September 22, Wednesday, 2pm-4pm, Kinney
 Statistics V
- September 24, Friday, 2pm-4pm, Kinney
 Statistics VI
- October 6, Wednesday, 1pm-3pm, Dobin
 Machine Learning I
- October 8, Friday, 2pm-4pm, Dobin
 Machine Learning II
- October 13, Wednesday, 2pm-4pm, Koo
 Machine Learning III
- October 15, Friday, 2pm-4pm, Koo
 Machine Learning IV
- October 20, Wednesday, 2pm-4pm, Siepel
 Algorithms I
- October 21, Thursday, 2pm-4pm, Siepel
 Algorithms II
- October 27, Wednesday, 2pm-4pm, Siepel
 Algorithms III
- October 29, Friday, 2pm-4pm, Siepel
 Evolution I
- November 3, Wednesday, 2pm-4pm, Preall
 Genomics I
- November 5, Friday, 2pm-4pm, Preall
 Genomics II
- November 10, Wednesday, 2pm-4pm, McCandlish
 Evolution II
- November 15, Monday, 2pm-4pm, McCandlish
 Evolution III
- November 17, Wednesday, 2pm-4pm, Meyer
 Genomics III
- November 19, Friday, 2pm-4pm, Meyer
 Genomics IV
- December 1, Thursday, 2pm-4pm, Kinney
 Biophysics I
- December 3, Friday, 3:00pm-5:00pm, Kinney
 Biophysics II

Student Evaluation:
Problem sets: 80%, Lecture participation: 20%

Learning Objectives
- Acquire a working knowledge of standard statistics and
 Python programming
- Exposure to more advanced topics in machine learning,
 genomics, population genetics, neuroscience and
 biophysics
Learning Outcomes

- Be able to analyze and interpret large data sets
- Be able to frame biological hypotheses quantitatively

Background reading:

Reference Material
There is a GitHub repository for the QB course
Download and install Anaconda with Python 3.8
- https://www.anaconda.com/download/).
Core Course on Specialized Disciplines
Module 2: Genetics and Genomics
Course Syllabus

Course Faculty
Lead Instructor: Dr. Ullas Pedmale
Invited Experts: Dr. Dave Jackson
Dr. Zach Lippman
Dr. Rob Martienssen
Dr. Benjamin Roche
Dr. Sophie Zebell
Tutor: Dr. Benjamin Roche

Lectures:
- **Tuesday, September 7 2:30pm-4:30pm: Pedmale**
 Topic: Plants – what makes them different and similar to animals?

- **Thursday, September 9 2pm-4pm: Pedmale**
 Topic: Hormones and Light Signaling

- **Monday, September 13 2pm-4pm: Zebell**
 Topic: Plant Immunity

- **Tuesday, September 14 2:30pm-4:30pm: Pedmale**
 Paper Discussion:

- **Friday, September 17 2pm-4pm: Lippman**
 Topic: Fundamentals (molecular and genetic) of flowering in development, evolution, domestication and breeding.

- **Monday, September 20 2:00pm-4:00pm: Pedmale**
 Topic: Genetics basics, Principles of genetic screens, mapping, and gene identification
 Background reading: Griffiths Ch. 1-3
 Background reading: Griffiths Ch. 4, and

- **Tuesday, September 21 2:30pm-4:30pm: Martienssen**
 Topic: Transposons and gene silencing

- **Thursday, September 23 2pm-4pm: Jackson**
 Topic: genetics and signaling of the plant meristem.

- **Monday, September 27 2pm-4pm: Pedmale**
 Topic: Epistasis, Clinical Genetics or genetic basis of diseases.
 a. Background reading: Griffiths Ch. 6.

- **Tuesday, September 28 2:30pm-4:30pm: Roche**
 Topic: Genomic approaches to classical genetics
 Background reading:

- **Thursday, September 30 2pm-4pm: Roche**
 Topic: Non-Mendelian Inheritance – epigenetics and strange genetics

- **Tuesday, October 5 2pm-4pm: Pedmale**
 Topic: Paper Discussion:

Student Evaluation:
- Problem sets: 40%; Journal club discussions: 30%; Lecture participation: 30%

Learning Objectives:
- To place modern genetics and genomics into the context of classical genetics.
- Genetic basis of diseases.
- History, technique, and perspective of genetic inference along with four levels of analysis: forward genetics, natural genetic variation, gene interaction, and genomics.
- Integration of classical with modern questions of genetic analysis: How are genes mapped and “cloned”? How do gene mutations help to define biological processes? How are more complex traits genetically dissected into their component parts? What concepts and techniques are used to organize genes into pathways and networks? What defines a gene and what gene variation exists in natural populations? What are the functional consequences of gene variation, and how is it detected? How are genomes organized and coordinately regulated? How can genomic information be catalogued, organized and mined?

Learning Outcomes:
- Apply the principles of genetics
- Demonstrate an understanding of the concept of Mendelian and non-Mendelian inheritance
- Describe tools and techniques used in genetics and genomics.
- Demonstrate an understanding of the genetic basis of phenotype and complex phenotypes

Reference Material:

Reviews:
- Blount, Z., Borland, C., Lenski, E. 2008. Historical contingency and the evolution of a key innovation in an
experimental population of Escherichia coli. *PNAS* 105: 7899-7906

Supplemental reading:
- Indicated along with the lecture topic

Problem Set Papers:
- Indicated along with the lecture topic

Discussion Papers
- Indicated along with the lecture topic
Core Course on Specialized Disciplines
Module 3: Cancer
Course Syllabus

Module: Cancer

Course Faculty
Organizers: Mikala Egeblad
Christopher Vakoc

Invited Experts: Semir Beyaz
Jeremy Borninger
Camila dos Santos
Tobias Janowitz
Michael Lukey
David Tuveson
Linda Van Aelst

Lectures:
Friday, October 1: Egeblad
2:00pm – 4:00pm: The Hallmarks of Cancer

Monday, October 4: Tuveson
3:00pm – 5:00pm: Cancer Models

Wednesday, October 6: Vakoc
10:00am – 12:00pm: The Cancer Genome

Thursday, October 7: Vakoc
9:00am – 11:00am: Paper Discussion:

Thursday, October 7: dos Santos
12:00 pm – 2:00 pm: Cancer Epigenetics

Thursday, October 14: Vakoc
10:00am – 12:00pm: Targeted Cancer

Thursday, October 14: Egeblad
2:00pm – 4:00pm: Tumor microenvironment

Monday, October 18: Beyaz
2:00pm – 4:00pm: Tumor Immunology

Tuesday, October 19: Borniger & Janowitz
10:00am – 12:00pm: Host response to cancer

Tuesday, October 19: Beyaz
2:00pm – 4:00pm: Paper Discussion

Wednesday, October 20: Egeblad & Van Aelst
10:00am – 12:00pm: Metastasis

Thursday, October 21: Janowitz & Lukey
10:00am – 12:00pm: Cancer Metabolism

Friday, October 22: Lukey
10:00am – 12:00pm: Paper Discussion

Friday, October 22: Egeblad & Vakoc
2:00 pm – 4:00 pm: Problem Set Discussion and Course Round Up

Student Evaluation:
• 40% participation in daily discussions during lectures
• 40% based on paper discussions
• 20% based on problem set

Learning Objectives
Gain proficiency in the following:
• Hallmarks of cancer
• Tumor progression
• Cancer genome
• Cancer microenvironment
• Tumor immunology
• Metastasis

SD: Cancer Fall 2021
• Approaches to treating cancer, including targeted therapy

Learning Outcomes
• Elaborate on an understanding of cancer as a pathological process
• Discuss how cancer progresses
• Contemplate how to expand on current methods to treat cancer
• Design tractable methods to investigate fundamental aspects of cancer biology
• Discuss translational approaches to defeating cancer

Reference Material
Textbooks:
• Weinberg, RA 2014. The Biology of Cancer

Reviews:

Supplemental reading
• Alberts, B et al. 2008. Molecular Biology of the Cell
• Mukherjee S. 2011. The Emperor of All Maladies: A Biography of Cancer

Discussion Papers
Core Course on Specialized Disciplines
Module 4: Systems Neuroscience
Course Syllabus

Course Faculty
Instructors:
Dr. Stephen Shea (lead)
Dr. Florin Albeanu

Tutor:
Dr. Pryianka Gupta

Lectures:
Wednesday, September 29, 2021 (10:00am-12:00pm): Shea
- Transduction, Conduction, and Excitability

Thursday, September 30, 2021 (10:00am-12:00pm): Shea
- Synapses, Plasticity, and Integration

Monday, November 1, 2021 (2:00pm-4:00pm): Shea
- Sensory Systems and Receptive Fields I: Olfaction, Audition, and Taste

Tuesday, November 2, 2021(2:00pm-4:00pm): Shea
- Sensory Systems and Receptive Fields II: Somatosensation and Vision

Thursday, November 4, 2021(2:00pm-4:00pm): Albeanu
- Neural Coding I: Single Neuron Coding, Rate, and Temporal Coding

Monday, November 8, 2021(2:00pm-4:00pm): Albeanu
- Neural Coding II: Reverse Correlation and Spike Triggered Averaging

Tuesday, November 9, 2021(2:00pm-4:00pm): Shea
- Neural Coding III: Population Coding and Decoding

Thursday, November 11, 2021(2:00pm-4:00pm): Shea/Albeanu
- Analysis of Behavior

Monday, November 29, 2021(2:00pm-4:00pm): Albeanu
- Causality in Neuroscience

Tuesday, November 30, 2021(2:00pm-4:00pm): Shea
- Title of Lecture Feedback and Neuromodulation

Thursday, December 2, 2021 (2:00pm-4:00pm): All
- Paper Presentations/Debates

Thursday, December 3, 2021(10:00am-12:00am): All
- Paper Presentations/Debates

Student Evaluation: There will be three main components to the class: lectures, a problem set and paper presentations. Evaluation will be based on participation during the lectures and performance during paper presentations and the problem set.
Paper Presentations: 50%
Lecture participation: 25%
Problem set: 25%

Learning Objectives
Achieve fluency with the following topics:
- Neuronal excitability and sensory transduction
- Synaptic communication and modification
- Receptive field structure and single neuron and population coding
- Analysis of natural and trained behaviors

Learning Outcomes
- Understand the logic and tools of modern neuroscience
- Master experimental design in systems neuroscience
- Think critically about systems neuroscience literature
- Understand the basics of information representation in the brain
- Appreciate the importance of causal manipulations of brain activity to neuroscience as an experimental field
Reference Material
Textbooks:

- “Principles of Neurobiology” by Liqun Luo

Supplemental reading

Discussion Papers

