One experiment

Via a Web-based portal built by his lab team www.mouse.brainarchitecture.org - CSHL Professor Partha Mitra takes us on a journey to the final frontier of human biology, the brain. His team is fast closing in on their goal of providing the first whole-brain circuit map of the mouse. The rationale to generate a reference wiring diagram to identify arcit artarations in neuroiogcal disorders, and understand brain evolution by comparing wirin diagrams across species.

Using four neural tracers injected sequentially at 250 brain locations in mice of identical age and sex, the team enables us to follow branching projections from myriad neurons over the fal volume of brainspace. Each injection can be thought of as one experiment. This image takes the full circuit is compiled mouse by mouse, each the full circuit is compied, mouse by mouse, each orain imaged robotically $\mathbf{5 0 0}$ cross-sections, each section $1 / 50 \mathrm{~mm}$ wide.

This journey begins with injections of red- and green-labeled tracers at different depths in the left motor cortex. The injection appears on the right, as we look into the brain from the perspective of the mouses nose. Fioers project from the motor cortex in two main bundes. To our ferf, axons shoot across the corpus callosum to the opposite hemisphere, sides. To our lisht and down, fibers project into the sides. To our nght and down, ilbers project into the striatum on ther way to connection whow the thalain HT iPad appl The human loll in HT iPad app] The human analogs of these fibers are thought to control our hands - neurons on the left side controiling the right hano. It boggles the mind to consider the myriad functions that will be traceable once the fullorain circurt map is completed. Then too we will have a basis for a wholly nove perspective on brain stucture and asfunction in autism, schzoplre

Peter Tarr

