
Studies the development and organization of neural circuits in the mouse cerebral cortex. His team uses an integrated approach to identify neuronal cell types and discover how they interact to process information and guide behavior, focusing on the motor cortex that controls forelimb movement. His studies of inhibitory interneurons, such as chandelier cells, have implications for understanding schizophrenia and autism.
Josh Huang and colleagues study the assembly and function of neural circuits in the neocortex of the mouse. The neocortex consists of a constellation of functional areas that form a representational map of the external (sensory, social) and internal (visceral, emotional) world. These areas are strategically interconnected into elaborate information processing networks that guide behavior. The group’s overarching hypothesis is that, at the cellular level, cortical processing streams and output channels are mediated by a large set of distinct glutamatergic pyramidal neuron types, and functional neural ensembles are regulated by a diverse set of GABAergic interneuron types. Understanding cortical circuit organization requires comprehensive knowledge of these basic cellular components. The Huang lab uses state-of-the-art genetic approaches to systematically target cell types and facilitate the application of a full set of modern techniques for exploring cortical circuits. Among GABAergic interneurons, the chandelier cell is one of the most distinctive cell type that controls pyramidal neuron firing at the axon initial segment. Huang and colleagues are studying the developmental specification, activity-dependent circuit integration, and functional connectivity of chandelier cells, an entry point towards understanding a local circuit module. Regarding pyramidal neurons, they are systematically characterizing the developmental origin, axon projection pattern, and input connectivity of multiple classes of pyramidal neuron types, focusing on the forelimb motor cortex. They combine a range of approaches that include genetic and viral engineering, genetic fate mapping, gene expression profiling, cellular imaging, electrophysiology, and behavior analysis. Recently, they begin to integrate their studies in the context of the motor cortex control of forelimb movements.
2015: Special Lecture, Society of Neuroscience Annual Meeting, Chicago
2013: President’s Plenary Lecture, American College of Neuropsychopharmacology (ACNP), Florida
2011-2012: Distinguished Investigator, NARSAD-Brain and Behavior Research Foundation
2007–2017: Simon’s Investigator; Simons Foundation Autism Research Initiative
2010: Plenary Lecture, Society of Biological Psychiatry 65th Annual Meeting, New Orleans
2007-2010: Harold & Leila Mathers Foundation Award
2004–2007: McKnight Scholar Award in Neuroscience
2004–2006: EJLB Foundation Award
2002–2005: Pew Scholar Award
2004-2007: March of Dime Birth Defect Foundation Award
2001-2004: Whitehall Foundation Award
Fine-tuning motivation in the brain
December 9, 2021
Scientists have pinpointed a group of neurons in the brain that can adjust a mouse’s motivational drive to seek out rewards.
Building on 150 years of neuroanatomy
October 7, 2021
Learn more about how researchers reached a milestone in a years-long effort to catalog the cells of the human, mouse, and monkey brains.
Think a census of humans is hard? Try counting their brain cells!
October 6, 2021
CSHL researchers and other collaborators reached a milestone in a years-long effort to catalog the cells of the human, mouse, and monkey brains.
CSHL researcher wins NIH Director’s Pioneer Award
October 5, 2021
CSHL Adjunct Professor Z. Josh Huang was recognized for new cell engineering tools that will have broad applications in biological research.
NIH BRAIN Initiative invests $9.7 million in CSHL scientists
December 29, 2020
CSHL scientists received grants to broaden our knowledge of the human brain and how to treat neurological disorders.
Mice with too many chandelier cells lack depth perception
December 8, 2020
Chandelier cells should decrease in number as animals develop. Mice with too many cells lack depth perception.
Problems with depth perception caused by too many cells
December 7, 2020
Chandelier cells should decrease in number as animals develop. If too many remain, brain systems may not work properly.
Congressman Suozzi honors Regeneron scholars at CSHL
February 26, 2020
Congressman Tom Suozzi congratulated Regeneron semi-finalists, including two Partners for the Future, at a ceremony hosted at CSHL.
Abnormal neuron activity manifests as parental neglect
January 8, 2020
Without the gene Mecp2, mice can’t learn to care for crying pups. Knowing when the brain is able to learn may help treat developmental disorders.
CSHL investigators rank among world’s most highly cited
December 11, 2019
Seven researchers affiliated with CSHL are among the scientists producing the top 1 percent of the most highly-cited research in the world.