Upcoming Events

July 12
LIABC Women’s Tennis Tournament & Luncheon
Old Westbury Golf & Country Club
Proceeds support CHL
Early career research
For more information, call 516-367-6923
(Begins 8 a.m.)

July 15
Walking Tour of Cold Spring Harbor Laboratory
Grace Auditorium, 10 a.m.
Reservations required, call 516-367-6925

July 20
Photography Exhibition Opening Reception
"Prozac’s Target: Revealed" by Ryan Brenizer
Bush Auditorium, 7 p.m.
Reservations required, call 516-367-5016
Exhibition: Bush Auditorium, July 20-August 15
Open daily, 9 a.m. – 6 p.m.

August 5
LIABC Lecture
Cold Spring Harbor Laboratory Beach, 7 p.m.
Proceeds support CHL
Early career research
For more information, call 516-367-6923
(Begins 8 a.m. August 6)

September 12
Gualtiero Bozzi Lecture
"Yeast & the Evolution of Genes" by Jeffrey Finkelstein, M.D., Ph.D.
The Rockefeller University
Grace Auditorium, 7 p.m.
Reservations required, call 516-367-5016

September 17
"Cruizin’ for a Cure"
Custom and Classic Car Show
Fireman’s Field, Merrick, 9 a.m. – 5 p.m.
Proceeds support CHL
prostate cancer research
For information and registration, call 1-888-LICRUIZIN
or visit www.cruzinforacure.com

September 20
Art Exhibition Opening Reception
"Prozac’s Target: Revealed" by Ryan Brenizer
Bush Auditorium, 7 p.m.
Reservations required, call 516-367-5016
Exhibition: Bush Fireplace Room, September 20 – October 1
Open daily, 9 a.m. – 6 p.m.

July 12
LIABC Women’s Tennis Tournament & Luncheon
Old Westbury Golf & Country Club
Proceeds support CHL
Early career research
For more information, call 516-367-6923
(Begins 8 a.m.)

July 15
Walking Tour of Cold Spring Harbor Laboratory
Grace Auditorium, 10 a.m.
Reservations required, call 516-367-6925

July 20
Photography Exhibition Opening Reception
"Prozac’s Target: Revealed" by Ryan Brenizer
Bush Auditorium, 7 p.m.
Reservations required, call 516-367-5016
Exhibition: Bush Auditorium, July 20-August 15
Open daily, 9 a.m. – 6 p.m.

August 5
LIABC Lecture
Cold Spring Harbor Laboratory Beach, 7 p.m.
Proceeds support CHL
Early career research
For more information, call 516-367-6923
(Begins 8 a.m. August 6)

September 12
Gualtiero Bozzi Lecture
"Yeast & the Evolution of Genes" by Jeffrey Finkelstein, M.D., Ph.D.
The Rockefeller University
Grace Auditorium, 7 p.m.
Reservations required, call 516-367-5016

September 17
"Cruizin’ for a Cure"
Custom and Classic Car Show
Fireman’s Field, Merrick, 9 a.m. – 5 p.m.
Proceeds support CHL
prostate cancer research
For information and registration, call 1-888-LICRUIZIN
or visit www.cruzinforacure.com

September 20
Art Exhibition Opening Reception
"Prozac’s Target: Revealed" by Ryan Brenizer
Bush Auditorium, 7 p.m.
Reservations required, call 516-367-5016
Exhibition: Bush Fireplace Room, September 20 – October 1
Open daily, 9 a.m. – 6 p.m.
In this case, neurons are labeled by a gene that expresses a green fluorescent protein in place of the normal protein. Their recent findings have identified the precise cellular target of Prozac (see cover story, page 2). The results extend previous observations that drugs like Prozac stimulate the genesis of new neurons in the brain, potentially explaining how Prozac works to relieve depression.

Such progress in neuroscience at Cold Spring Harbor would not be possible without the support of several foundations and generous, forward-thinking individuals including the Thomas-Hartman Foundation for Patents Research and CSHL, Trustee Jerry Swartz. We are also pleased to have received the following recent support for expanding our neuroscience program. With a $10 million gift from Ted and Kalee Stanley and an additional $1 million grant from the Forrest C. Lathem Foundation, the Laboratory is embarking on an initiative to find genes that are defective in patients with schizophrenia and other forms of mental illness.

Kathryn Davis recently helped the Laboratory create The Davis Family Center for Human Genetics through a $5 million planned gift. Research at the new center will focus on improving the diagnosis and treatment of cancer, Parkinson’s disease, autism, schizophrenia, multiple sclerosis, and other genetically based diseases. Finally, Landon and Lavinia Clay have established the Crick-Clay Foundation; the Laboratory is embarking on an initiative to find genes that are defective in patients with schizophrenia and other forms of mental illness.

Kathryn Davis recently helped the Laboratory create The Davis Family Center for Human Genetics through a $5 million planned gift. Research at the new center will focus on improving the diagnosis and treatment of cancer, Parkinson’s disease, autism, schizophrenia, multiple sclerosis, and other genetically based diseases. Finally, Landon and Lavinia Clay have established the Crick-Clay Foundation, the Laboratory is embarking on an initiative to find genes that are defective in patients with schizophrenia and other forms of mental illness.

Vada Stanley and an additional $1 million grant from the Forrest C. Lathem Foundation. The Laboratory is embarking on an initiative to find genes that are defective in patients with schizophrenia and other forms of mental illness.
Targeting Neurological Disease

The era of contemporary neuroscience research at Cold Spring Harbor—now driven by some 1,750 scientists in 15 laboratories—can be traced in part to pioneering studies conducted here more than two decades ago by Blight Zipser, Ron McKay, and Susan Hockfield.

In 1978, Zipser and McKay set out to characterize the diversity of cell types in a simple, model nervous system—that of the leech. They immunized mice with whole leech nerve cords and isolated monoclonal antibodies that specifically recognize small peptides in the leech nervous tissue. These antibodies were used for staining of the cells with the antibodies. These experiments yielded definitive results for identifying new therapies for neurological disease, particularly cancer.

In 1978, Zipser and McKay set out to characterize the diversity of cell types in a simple, model nervous system—that of the leech. They immunized mice with whole leech nerve cords and isolated monoclonal antibodies that specifically recognize small peptides in the leech nervous tissue. These antibodies were used for staining of the cells with the antibodies. These experiments yielded definitive results for identifying new therapies for neurological disease, particularly cancer.

In this case, results are labeled by a gene that expresses a green fluorescent protein in the absence of the protein. Their recent findings have identified the precise cortical target of Prozac (a cover story, page 2). The results extend previous observations that drugs like Prozac stimulate the genesis of new neurons in the brain, potentially explaining how Prozac works to relieve depression.

Such progress in neuroscience at Cold Spring Harbor would not have been possible without the support of several foundations and generous, forward-thinking individuals including the Thomas Hartman Foundation for Parkinson's Research at CSHL, THOUGHT, and McKay took a similar marker protein approach toward uncovering the studies necessary for developing a better understanding of how the brain works and for identifying new therapies for neurological and other diseases, particularly cancer.

We are also pleased to have received the following recent support for expanding our neuroscience program. With a $5 million gift from Ted and Vada Stanley and an additional $2 million grant from the Forrest C. Luderer Foundation, the Laboratory is embarking on an initiative to find genes that are defective in patients with schizophrenia and other forms of mental illness.

Kathryn Davis recently helped the Laboratory create the Davis Family Center for Human Genetics through a $5 million planned gift. Research at the new center will focus on improving the diagnosis and treatment of cancer, Parkinson's disease, autism, schizophrenia, multiple sclerosis, and other genetically based diseases. Finally, Lurian and Laura Clay-Gay have established the Crock-Clay Endowment to support a Professorship in biomathematics and a Student Fellowship in biostatistics.

In 1978, Zipser and McKay set out to characterize the diversity of cell types in a simple, model nervous system—that of the leech. They immunized mice with whole leech nerve cords and isolated monoclonal antibodies that specifically recognize small peptides in the leech nervous tissue. These antibodies were used for staining of the cells with the antibodies. These experiments yielded definitive results for identifying new therapies for neurological disease, particularly cancer.

We are also pleased to have received the following recent support for expanding our neuroscience program. With a $5 million gift from Ted and Vada Stanley and an additional $2 million grant from the Forrest C. Luderer Foundation, the Laboratory is embarking on an initiative to find genes that are defective in patients with schizophrenia and other forms of mental illness.

Kathryn Davis recently helped the Laboratory create the Davis Family Center for Human Genetics through a $5 million planned gift. Research at the new center will focus on improving the diagnosis and treatment of cancer, Parkinson's disease, autism, schizophrenia, multiple sclerosis, and other genetically based diseases. Finally, Lurian and Laura Clay-Gay have established the Crock-Clay Endowment to support a Professorship in biomathematics and a Student Fellowship in biostatistics.

In 1978, Zipser and McKay set out to characterize the diversity of cell types in a simple, model nervous system—that of the leech. They immunized mice with whole leech nerve cords and isolated monoclonal antibodies that specifically recognize small peptides in the leech nervous tissue. These antibodies were used for staining of the cells with the antibodies. These experiments yielded definitive results for identifying new therapies for neurological disease, particularly cancer.

We are also pleased to have received the following recent support for expanding our neuroscience program. With a $5 million gift from Ted and Vada Stanley and an additional $2 million grant from the Forrest C. Luderer Foundation, the Laboratory is embarking on an initiative to find genes that are defective in patients with schizophrenia and other forms of mental illness.

Kathryn Davis recently helped the Laboratory create the Davis Family Center for Human Genetics through a $5 million planned gift. Research at the new center will focus on improving the diagnosis and treatment of cancer, Parkinson's disease, autism, schizophrenia, multiple sclerosis, and other genetically based diseases. Finally, Lurian and Laura Clay-Gay have established the Crock-Clay Endowment to support a Professorship in biomathematics and a Student Fellowship in biostatistics.

In this case, results are labeled by a gene that expresses a green fluorescent protein in the absence of the protein. Their recent findings have identified the precise cortical target of Prozac (a cover story, page 2). The results extend previous observations that drugs like Prozac stimulate the genesis of new neurons in the brain, potentially explaining how Prozac works to relieve depression.

Such progress in neuroscience at Cold Spring Harbor would not have been possible without the support of several foundations and generous, forward-thinking individuals including the Thomas Hartman Foundation for Parkinson's Research at CSHL, THOUGHT, and McKay took a similar marker protein approach toward uncovering the studies necessary for developing a better understanding of how the brain works and for identifying new therapies for neurological and other diseases, particularly cancer.

We are also pleased to have received the following recent support for expanding our neuroscience program. With a $5 million gift from Ted and Vada Stanley and an additional $2 million grant from the Forrest C. Luderer Foundation, the Laboratory is embarking on an initiative to find genes that are defective in patients with schizophrenia and other forms of mental illness.

Kathryn Davis recently helped the Laboratory create the Davis Family Center for Human Genetics through a $5 million planned gift. Research at the new center will focus on improving the diagnosis and treatment of cancer, Parkinson's disease, autism, schizophrenia, multiple sclerosis, and other genetically based diseases. Finally, Lurian and Laura Clay-Gay have established the Crock-Clay Endowment to support a Professorship in biomathematics and a Student Fellowship in biostatistics.
By profiling the telltale marker proteins produced by different kinds of cells in the brains of adult mice, Grisha’s group—spearheaded by postdoctoral fellow Juan Manuel Encinas—first defined discrete steps in the complex process, called neurogenesis, that converts unspecialized stem cells into mature, specialized neurons (see illustration below).

Next, knowing that Prozac treatment somehow increases the number of neurons in the brain, the researchers tried to identify which step in the neurogenesis pathway might be stimulated by Prozac. They found that Prozac treatment specifically stimulates the generation of a kind of cells they dubbed “amplifying neural progenitors” or ANPs—the second step in the neurogenesis pathway from stem cells to mature neurons.

To address the controversy surrounding the use of Prozac in children and in pregnant women, Grisha’s group is currently testing the effects of the drug on brain neurogenesis in juvenile and pregnant mice. The results of those experiments should provide valuable information for assessing the possible effects of Prozac and related drugs on fetal and adolescent brain development. The researchers are also using the approach and tools they’ve developed to explore whether other treatments for depression—including other drugs and deep brain stimulation—act in the same way as Prozac or in different ways. And they’re screening for new drugs that stimulate ANP cells to multiply and thus expand the production of brain neurons.

In collaboration with NASA scientists, experiments are also underway in Grisha’s lab to assess how neurogenesis in the adult brain might be influenced by long-term, Mission-to-Mars levels of exposure to a particular kind of damaging radiation that’s prevalent in space.

Grisha’s recent study of the effects of Prozac on neurogenesis in adult mice was published in the Proceedings of the National Academy of Sciences and is a basis for understanding many fundamental principles of neurobiology and for exploring new ways to treat a variety of brain disorders.

Peter W. Sherwood

CSHL scientist

Grigori (Grisha) Enikolopov and his colleagues have identified which among several different kinds of cells in the brain is the chief target of the widely prescribed antidepressant Prozac. This discovery might enable a new generation of more specific treatments for depression, with fewer side effects, to be developed. It also lays the foundation for many studies of the factors that control how, when, and where new neurons are generated from stem cells in the brain. Such work could eventually lead to new replacement therapies for neurodegenerative and other brain disorders including Alzheimer’s and Parkinson’s diseases.

It’s been known for some years that Prozac (fluoxetine) is likely to relieve the symptoms of depression by somehow causing more neurons to be present in a particular region of the brain (the “dentate gyrus”). But the origins of these neurons, and how Prozac promotes their existence, have been a mystery—until now.

Juan Manuel Encinas (left) and Grigori Enikolopov

Continued on following page
By profiling the telltale marker proteins produced by different kinds of cells in the brains of adult mice, Grisha’s group—spearheaded by postdoctoral fellow Juan Manuel Encinas—first defined discrete steps in the complex process, called neurogenesis, that converts unspecialized stem cells into mature, specialized neurons (see illustration below).

Next, knowing that Prozac treatment somehow increases the number of neurons in the brain, the researchers tested which step in the neurogenesis pathway might be stimulated by Prozac. They found that Prozac treatment specifically stimulates the generation of a kind of cells they dubbed “amplifying neural progenitors” or ANPs—the second step in the neurogenesis pathway from stem cells to mature neurons.

To address the controversy surrounding the use of Prozac in children and in pregnant women, Grisha’s group is currently testing the effects of the drug on brain neurogenesis in juvenile and pregnant mice. The results of those experiments should provide valuable information for assessing the possible effects of Prozac and related drugs on fetal and adolescent brain development.

The researchers are also using the approach and tools they’ve developed to explore whether other treatments for depression—including other drugs and deep brain stimulation—act in the same way as Prozac or in different ways. And they’re screening for new drugs that stimulate ANP cells to multiply and thus expand the production of brain neurons.

In collaboration with NASA scientists, experiments are also under way in Grisha’s lab to assess how neurogenesis in the adult brain might be influenced by long-term, Mission-to-Mars levels of exposure to a particular kind of damaging radiation that’s prevalent in space.

Grisha’s recent study of the effects of Prozac on neurogenesis in adult mice was published in the Proceedings of the National Academy of Sciences and is a basis for understanding many fundamental principles of neurobiology and for exploring new ways to treat a variety of brain disorders. Peter W. Sherwood
In April, CSHL chancellor Jim Watson addressed an enthusiastic capacity crowd of more than 500 employees at the Google corporation’s Mountain View, California, headquarters. After cheerfully relating the double helix discovery story and offering advice to the youthful gathering (“always talk to your competitors,” “don’t be the brightest person in the room or you won’t be able to be helped,” “don’t bring more than a three-year window to solve a tough problem”), Watson introduced his main topic, “DNA and the Brain.” Just as the disciplines of chemistry and biology were critically paired in the last century, he said, biology and psychology will be paired, with important results, in the coming century. As scientists grapple with mental illness and learning differences, he explained, “nature” appears to trump “nurture” as a cause. To highlight the importance of genetics, he cited the origin of brain disorders, Watson described the ROMA (“Repairing Our Molecular Anatomy”) DNA biopsy technology invented at CSHL—this year being used there to pinpoint the chromosomal alterations that result in autism, schizophrenia, Parkinson’s, and other common diseases of the brain. Watson then quoted statistics that show an apparent higher incidence of autism in children of highly intelligent parents—specifically, when both mothers and fathers have classically “analytical” or “mathematics proficient” brains. To wit, he thinks studies of fetal testosterone and the “extreme male brain” theory of autism are promising (see page 16). Watson concluded by reminding the audience of the magnitude of the stakes: the social awkwardness of autism is crippling to children and parents alike. In an age when our understanding of inequities in human ability and resourcefulness is increasing, we must be not only vigilant, but also compassionate, as we seek to improve lives, he said.

A Cold Spring Harbor attendee was curious if this was the largest crowd ever for a lecture at Google. “Only one other person drew so large a crowd—Colin Powell,” said a Google communications officer.

After the talk, Google employees invited Dr. Watson to sign his classic book, The Double Helix. While meeting the large crowd of fans, Watson quipped, “I don’t think I’d have access to such a legendary, pioneering scientist anywhere else.”

While in California, Watson also visited Genentech (see page 18) and thanked its leaders for helping establish the Genentech Center for the History of Molecular Biology and Biotechnology at CSHL.

Pat Nicholson

In April, CSHL chancellor Jim Watson addressed an enthusiastic capacity crowd of more than 500 employees at the Google corporation’s Mountain View, California, headquarters. After cheerfully relating the double helix discovery story and offering advice to the youthful gathering (“always talk to your competitors,” “don’t be the brightest person in the room or you won’t be able to be helped,” “don’t bring more than a three-year window to solve a tough problem”), Watson introduced his main topic, “DNA and the Brain.” Just as the disciplines of chemistry and biology were critically paired in the last century, he said, biology and psychology will be paired, with important results, in the coming century. As scientists grapple with mental illness and learning differences, he explained, “nature” appears to trump “nurture” as a cause. To highlight the importance of genetics, he cited the origin of brain disorders, Watson described the ROMA (“Repairing Our Molecular Anatomy”) DNA biopsy technology invented at CSHL—this year being used there to pinpoint the chromosomal alterations that result in autism, schizophrenia, Parkinson’s, and other common diseases of the brain. Watson then quoted statistics that show an apparent higher incidence of autism in children of highly intelligent parents—specifically, when both mothers and fathers have classically “analytical” or “mathematics proficient” brains. To wit, he thinks studies of fetal testosterone and the “extreme male brain” theory of autism are promising (see page 16). Watson concluded by reminding the audience of the magnitude of the stakes: the social awkwardness of autism is crippling to children and parents alike. In an age when our understanding of inequities in human ability and resourcefulness is increasing, we must be not only vigilant, but also compassionate, as we seek to improve lives, he said.

A Cold Spring Harbor attendee was curious if this was the largest crowd ever for a lecture at Google. “Only one other person drew so large a crowd—Colin Powell,” said a Google communications officer.

After the talk, Google employees invited Dr. Watson to sign his classic book, The Double Helix. While meeting the large crowd of fans, Watson quipped, “I don’t think I’d have access to such a legendary, pioneering scientist anywhere else.”

While in California, Watson also visited Genentech (see page 18) and thanked its leaders for helping establish the Genentech Center for the History of Molecular Biology and Biotechnology at CSHL.

Pat Nicholson
When 400 people gather under a tent on a rainy Saturday night in Cold Spring Harbor, you know it’s for a good reason. On April 22, supporters of the Cold Spring Harbor Laboratory Association gathered for the eighth annual JAZZ at the LAB benefit, which raised nearly $250,000 to support fellowships for young scientists, start-up research projects, and laboratory equipment.

This year’s benefit featured the Bill Charlap Trio. In a “jazz club” setting, the packed auditorium first enjoyed a superb interpretation of Great American Songbook hits by pianist Bill Charlap, drummer Kenny Washington, and bassist Peter Washington. Then, cocktails, a walking dinner, and dessert were followed by a late-night set.

In April, CSHL chancellor Jim Watson addressed an enthusiastic capacity crowd of more than 500 employees at the Google corporation’s Mountain View, California, headquarters. After cheerfully relating the double helix discovery story and offering advice to the youthful gathering (“always talk to your competitors,” “don’t be the brightest person in the room or you won’t be able to be helped,” “don’t shrink any more than a three-year window to solve a tough problem”), Watson introduced his main topic, “DNA and the Brain.”

Just as the disciplines of chemistry and biology were critically paired in the last century, Watson believes that medicine and biology will be paired, with important results, in the coming century. As scientists explore mental illness and learning differences, he explained, “mental illness appears to trump “normal” as a model. To highlight the predominance of genetics in the origin of brain diseases, Watson described the ROMA “DNA biopsy” technology invented at CSHL—this technology is being used to pinpoint the chromosomal alterations that result in autism, schizophrenia, Parkinson’s, and other chronic diseases of the brain. Watson then quoted statistics that show an apparent higher incidence of autism in children of highly intelligent parents—specifically, when both mothers and fathers have classically “analytical” or “mathematics proficient” brains. To wit, he cited studies of fetal testosterone and the “extreme male brain” theory of autism (see page 16).

Watson concluded by reminding the audience of the magnitude of the stakes: the social awkwardness of autism is crippling to children and parents alike. In an age when our understanding of inequities in human ability and resourcefulness is increasing, we must be not only vigilant, but also compassionate, as we seek to improve lives, he said.

A Cold Spring Harbor attendee was curious if this was the largest crowd ever for a lecture at Google. “Only one other person drew so large a crowd—Colin Powell,” said a Google communications officer.

After the talk, Google employees invited Dr. Watson to sign his classic book, The Double Helix. While waiting for his turn on the line, one of them said, “This is why I work at Google. I don’t think I’d have access to such a legendary, pioneering scientist anywhere else.”

While in California, Watson also visited Genentech (see page 18) and thanked its leaders for helping establish the Genentech Center for the History of Molecular Biology and Biotechnology at CSHL.
The Cold Spring Harbor Laboratory Association comprises some 1,000 neighbors and friends who contribute to the Annual Fund, an essential source of unrestricted support for outstanding young scientists and their promising, early-stage research projects. Association members get to know CSHL scientists at lectures, concerts, dinners, and other social events that support the Laboratory. Membership levels start at $100 per year. For more information, please contact Diane Fagiola, Director of Development, at 516-367-8471 or fagiola@cshl.edu.

**** JAZZ at the LAB ****

The benefit was chaired by Pien and Hans Bosch and Lisa and Tim Broadbent. Joe Donohue, president of the Association board, pointed out that the annual jazz benefit “just keeps getting better every year.” Guests sipped blue drinks from test tubes and lab beakers and enjoyed a delicious dinner catered by Elegant Affairs in beautifully decorated tents adjacent to the Laboratory’s Grace Auditorium. Support from the Laboratory Association’s Annual Fund ensures that the outstanding young scientists at the Laboratory have the means to pursue new and unconventional research which may lead to improved therapies for cancer and neurological diseases.

CSHL Association

The Cold Spring Harbor Laboratory Association comprises some 1,000 neighbors and friends who contribute to the Annual Fund, an essential source of unrestricted support for outstanding young scientists and their promising, early-stage research projects. Association members get to know CSHL scientists at lectures, concerts, dinners, and other social events that support the Laboratory. Membership levels start at $100 per year. For more information, please contact Diane Fagiola, Director of Development, at 516-367-8471 or fagiola@cshl.edu.

Directors

Joseph T. Donohue
Lynn M. Gray
Pien Bosch
Timothy S. Broadbent
Lynn McWhirter
Joseph A. Azarla
David L. Banker
Joyce Bertoldo
Maria Brisbane
Barbara Candee
Suzanne DiMaio
E. Richard Droesch
Nancy Edsparr
Linda Ferrante
Kate Seligson Friedman
Lori Garofalo
Larry Gellman, M.D.
John S. Grace
Michael S. O’Brien
Jay C. Plourde
Scott Ratner, M.D.
Henry E. Salzhauer
Ray Schuville
Cathy Cyphers Soref
John C. Stevenson, Ph.D.
Sandra Tytel

Honorary Directors

John P. Cleary
George W. Cutting, Jr.
Mary D. Lindsay
Anne R. Meier
Bruce Stillman, Ph.D.
PRESIDENT
James D. Watson, Ph.D.
CHANCELLOR
W. Dillaway Ayres, Jr.
CHIEF OPERATING OFFICER
Director of Development
Diane Fagiola

Summer 2006

Bringing Bioinformatics to Brazil and Mexico

We received the assignment: Barbara Zane and I would help organize and run a bioinformatics course—Accessing the Human Genome Sequence—in Brazil. Despite the substantial logistical maneuvering that would be required to establish a successful course some 5,000 miles from Cold Spring Harbor, this was an exciting prospect.

Continued
The benefit was chaired by Pien and Hans Bosch and Lisa and Tim Broadbent. Pien and Tim are directors on the Cold Spring Harbor Laboratory Association board. Joe Donohue, president of the Association board, pointed out that the annual jazz benefit “just keeps getting better every year.” Guests sipped blue drinks from test tubes and lab beakers and enjoyed a delicious dinner catered by Elegant Affairs in beautifully decorated tents adjacent to the Laboratory’s Grace Auditorium.

Support from the Laboratory Association’s Annual Fund ensures that the outstanding young scientists at the Laboratory have the means to pursue new and unconventional research which may lead to improved therapies for cancer and neurological diseases.

Jeff Picarello
Brazil has much to admire. Take its rapidly developing science base with notable ambitions for its space program, its successes in genome research including pioneering studies of the major citrus and coffee pathogen, Xylella fastidiosa, and its world leadership in aeronautic, farm, and space industries including the Amazon, the Pantanal, and the Atlantic Coastal Forests. As Charles Darwin recollected in The Voyage of the Beagle, “it was impossible for me to wish for anything more delightful than to spend some weeks in so magnificent a country.”

It was impossible for me to wish for anything more delightful than to spend some weeks in so magnificent a country. With Darwin as our inspiration, we departed JFK for São Paulo in February and arrived in the great, gritty city—30 miles from Pele’s hometown—which we love but hate for the smogging weeks.

The intensive, 3-day workshop we were bringing to Brazil had its origins at Cold Spring Harbor (CSHL) in the summer of 2001. During a break in that year’s Symposium, Jim Watson (Director) and David Stewart (Executive Director of Meetings & Courses) had themselves chatting on the lawn with David Bentley of the Sanger Centre, UK, all awestruck by the tremendous output of T's, G's, A's and C's being championed by the world’s many DNA sequencing centres every minute of every day. But they were astonished! Where would the scientists come from that could understand the stream, filter it, see its patterns and connections, and ultimately reveal its biological secrets? Thus, CSHL’s Accessing the Human Genome Course was born (with the cleverness of its TGAC acronym not escaping our notice).

For the workshop’s inaugural year, CSHL had brought together the course—either at CSHL or at the Wellcome Trust Genome Centre in Hinxton, UK—from amongst its neuroscience and connections, and ultimately reveal its biological secrets? Thus, CSHL’s Accessing the Human Genome Course was born (with the cleverness of its TGAC acronym not escaping our notice).

For the workshop’s inaugural year, CSHL had brought together the course—either at CSHL or at the Wellcome Trust Genome Centre in Hinxton, UK—from amongst its neuroscience and connections, and ultimately reveal its biological secrets? Thus, CSHL’s Accessing the Human Genome Course was born (with the cleverness of its TGAC acronym not escaping our notice).

For the workshop’s inaugural year, CSHL had brought together the course—either at CSHL or at the Wellcome Trust Genome Centre in Hinxton, UK—from amongst its neuroscience and connections, and ultimately reveal its biological secrets? Thus, CSHL’s Accessing the Human Genome Course was born (with the cleverness of its TGAC acronym not escaping our notice).

For the workshop’s inaugural year, CSHL had brought together the course—either at CSHL or at the Wellcome Trust Genome Centre in Hinxton, UK—from amongst its neuroscience and connections, and ultimately reveal its biological secrets? Thus, CSHL’s Accessing the Human Genome Course was born (with the cleverness of its TGAC acronym not escaping our notice).

For the workshop’s inaugural year, CSHL had brought together the course—either at CSHL or at the Wellcome Trust Genome Centre in Hinxton, UK—from amongst its neuroscience and connections, and ultimately reveal its biological secrets? Thus, CSHL’s Accessing the Human Genome Course was born (with the cleverness of its TGAC acronym not escaping our notice).

For the workshop’s inaugural year, CSHL had brought together the course—either at CSHL or at the Wellcome Trust Genome Centre in Hinxton, UK—from amongst its neuroscience and connections, and ultimately reveal its biological secrets? Thus, CSHL’s Accessing the Human Genome Course was born (with the cleverness of its TGAC acronym not escaping our notice).

For the workshop’s inaugural year, CSHL had brought together the course—either at CSHL or at the Wellcome Trust Genome Centre in Hinxton, UK—from amongst its neuroscience and connections, and ultimately reveal its biological secrets? Thus, CSHL’s Accessing the Human Genome Course was born (with the cleverness of its TGAC acronym not escaping our notice).

For the workshop’s inaugural year, CSHL had brought together the course—either at CSHL or at the Wellcome Trust Genome Centre in Hinxton, UK—from amongst its neuroscience and connections, and ultimately reveal its biological secrets? Thus, CSHL’s Accessing the Human Genome Course was born (with the cleverness of its TGAC acronym not escaping our notice).

For the workshop’s inaugural year, CSHL had brought together the course—either at CSHL or at the Wellcome Trust Genome Centre in Hinxton, UK—from amongst its neuroscience and connections, and ultimately reveal its biological secrets? Thus, CSHL’s Accessing the Human Genome Course was born (with the cleverness of its TGAC acronym not escaping our notice).

For the workshop’s inaugural year, CSHL had brought together the course—either at CSHL or at the Wellcome Trust Genome Centre in Hinxton, UK—from amongst its neuroscience and connections, and ultimately reveal its biological secrets? Thus, CSHL’s Accessing the Human Genome Course was born (with the cleverness of its TGAC acronym not escaping our notice).

For the workshop’s inaugural year, CSHL had brought together the course—either at CSHL or at the Wellcome Trust Genome Centre in Hinxton, UK—from amongst its neuroscience and connections, and ultimately reveal its biological secrets? Thus, CSHL’s Accessing the Human Genome Course was born (with the cleverness of its TGAC acronym not escaping our notice).

For the workshop’s inaugural year, CSHL had brought together the course—either at CSHL or at the Wellcome Trust Genome Centre in Hinxton, UK—from amongst its neuroscience and connections, and ultimately reveal its biological secrets? Thus, CSHL’s Accessing the Human Genome Course was born (with the cleverness of its TGAC acronym not escaping our notice).

For the workshop’s inaugural year, CSHL had brought together the course—either at CSHL or at the Wellcome Trust Genome Centre in Hinxton, UK—from amongst its neuroscience and connections, and ultimately reveal its biological secrets? Thus, CSHL’s Accessing the Human Genome Course was born (with the cleverness of its TGAC acronym not escaping our notice).

For the workshop’s inaugural year, CSHL had brought together the course—either at CSHL or at the Wellcome Trust Genome Centre in Hinxton, UK—from amongst its neuroscience and connections, and ultimately reveal its biological secrets? Thus, CSHL’s Accessing the Human Genome Course was born (with the cleverness of its TGAC acronym not escaping our notice).
Brazil has much to admire. Take its rapidly developing science base as a case in point, its successes in genome research including pioneering studies of the major citrus and coffee pathogens, *Xylella fastidiosa*, and its world leadership in alternative fuels. Then there is Brazil’s growing space program and Leadership in industry regions including the Amazon, the Pantanal, and the Atlantic Coastal Forests. As Cousin-Cyror mentioned in the image of the Amazon, “it was impossible for me to wish for anything more delightful than to spend some weeks in so magnificent a country.”

From the telephone of President, a trip participant had been to the Pantanal, and—very importantly—Brazil’s chances in the World Cup this summer. With the participants exhausted and heading rapidly for bed at the close of each day, evenings for the US contingent were spent dining out, with rodizio style Brazilian steakhouse (churrascaria) on the bills of fare. With Darwin as our inspiration, we departed JFK for São Paulo in February and arrived in the great, gritty city—30 miles from Pele’s hometown—which lacks big City for the evening week.

The 24 course participants hailed from universities and institutes in São Paulo, Rio de Janeiro, Minas Gerais, and Santa Catarina. Collectively, they had a remarkably varied array of research interests with the greatest concentrations being in cancer, heart disease, and metabolic disorders. With Darwin as our inspiration, we departed JFK for São Paulo in February and arrived in the great, gritty city—30 miles from Pele’s hometown—which lacks big City for the evening week.

With the participants exhausted and heading rapidly for bed at the close of each day, evenings for the US contingent were spent dining out, with rodizio style Brazilian steakhouse (churrascaria) on the bills of fare. With Darwin as our inspiration, we departed JFK for São Paulo in February and arrived in the great, gritty city—30 miles from Pele’s hometown—which lacks big City for the evening week.

Brazil has much to admire. Take its rapidly developing science base as a case in point, its successes in genome research including pioneering studies of the major citrus and coffee pathogens, *Xylella fastidiosa*, and its world leadership in alternative fuels. Then there is Brazil’s growing space program and Leadership in industry regions including the Amazon, the Pantanal, and the Atlantic Coastal Forests. As Cousin-Cyror mentioned in the image of the Amazon, “it was impossible for me to wish for anything more delightful than to spend some weeks in so magnificent a country.”

From the telephone of President, a trip participant had been to the Pantanal, and—very importantly—Brazil’s chances in the World Cup this summer. With the participants exhausted and heading rapidly for bed at the close of each day, evenings for the US contingent were spent dining out, with rodizio style Brazilian steakhouse (churrascaria) on the bills of fare. With Darwin as our inspiration, we departed JFK for São Paulo in February and arrived in the great, gritty city—30 miles from Pele’s hometown—which lacks big City for the evening week.

The 24 course participants hailed from universities and institutes in São Paulo, Rio de Janeiro, Minas Gerais, and Santa Catarina. Collectively, they had a remarkably varied array of research interests with the greatest concentrations being in cancer, heart disease, and metabolic disorders. With Darwin as our inspiration, we departed JFK for São Paulo in February and arrived in the great, gritty city—30 miles from Pele’s hometown—which lacks big City for the evening week.

Brazil has much to admire. Take its rapidly developing science base as a case in point, its successes in genome research including pioneering studies of the major citrus and coffee pathogens, *Xylella fastidiosa*, and its world leadership in alternative fuels. Then there is Brazil’s growing space program and Leadership in industry regions including the Amazon, the Pantanal, and the Atlantic Coastal Forests. As Cousin-Cyror mentioned in the image of the Amazon, “it was impossible for me to wish for anything more delightful than to spend some weeks in so magnificent a country.”

From the telephone of President, a trip participant had been to the Pantanal, and—very importantly—Brazil’s chances in the World Cup this summer. With the participants exhausted and heading rapidly for bed at the close of each day, evenings for the US contingent were spent dining out, with rodizio style Brazilian steakhouse (churrascaria) on the bills of fare. With Darwin as our inspiration, we departed JFK for São Paulo in February and arrived in the great, gritty city—30 miles from Pele’s hometown—which lacks big City for the evening week.

The 24 course participants hailed from universities and institutes in São Paulo, Rio de Janeiro, Minas Gerais, and Santa Catarina. Collectively, they had a remarkably varied array of research interests with the greatest concentrations being in cancer, heart disease, and metabolic disorders. With Darwin as our inspiration, we departed JFK for São Paulo in February and arrived in the great, gritty city—30 miles from Pele’s hometown—which lacks big City for the evening week.
When someone special enters your life, it’s said they never leave. For his family and scores of friends, that person was Andrew Seligson.

Born in 1963, Andrew grew up on Long Island in a happy, close-knit family. His parents, Edith and Alan, and his sisters Kate and Nancy, remember the happy, caring young man who was interested in sports, cars, and, of course, girls. But at 17—following an injury during a hockey game and the unexpected results of a subsequent physician—darkness fell over Andrew’s bright life: he was diagnosed with neuroblastoma, a fast-moving and fatal cancer.

A testament to his spirit, Andrew took his cancer and treatments in stride. Despite being told that he had just months to live, Andrew pursued new therapies, clinical trials, and his usual, vigorous life. Years after his initial diagnosis, he was still traveling the world, seeking new treatments and touching dozens of lives along the way with his indomitable spirit and upbeat attitude. ABC’s hit news program, 20/20, even profiled his journey, spotlighting the remarkable young man who encouraged so many.

After the show, “he received tons of fan mail and even offers for dates,” remembers his sister, Kate Seligson Friedman, a director of the CSHL Association. “He was so much fun.”

Though he was told he would never accomplish it, Andrew made his way to the University of Colorado, where he joined the DTD fraternity. His “brothers” became his second family and could not help but be taken by Andrew’s spirit and zest for living. There, the bonds he formed lasted a lifetime, a lifetime tragically cut short for Andrew by cancer.

After college, though continuing to pursue every available therapy, Andrew eventually succumbed to neuroblastoma, soon after a big black tie party Kate had thrown for his 25th birthday. His father, Alan, who today serves on CSHL’s Board of Trustees, established the Andrew Seligson Foundation to support the Laboratory’s cancer research, and to keep Andrew’s presence and unwavering spirit alive. Today, the foundation supports a postdoctoral fellow in the lab of Scott Lowe, Deputy Director of CSHL’s Cancer Center and a leader in cancer therapy research and pharmacogenomics.

Although 17 years have passed since his death and nearly twenty since Andrew was a “Delt” at the University of Colorado, it soon became clear that his family wasn’t the only group still touched by Andrew’s spirit. On the occasion of their 20th college reunion, his fraternity brothers, led by his close friend Xerxes Bhote, collected a significant sum to support research at CSHL in Andrew’s memory. They had all witnessed Andrew’s stubborn refusal to give in to what, at times, were incapacitating effects of his disease during his years at Colorado, and they wanted to create a tangible, meaningful remembrance of him.

A fantastic tennis player, a good friend, and a great son and brother, Andrew touched many lives in his short 25 years. The bonds of family never die, nor do those of friendship, as evidenced by the many University of Colorado “Dels” who came together to do something, as they simply put it, “for Andrew.”

Jeff Picarello
When someone special enters your life, it’s said they never leave. For his family and scores of friends, that person was Andrew Seligson.

Born in 1963, Andrew grew up on Long Island in a happy, close-knit family. His parents, Edith and Alan, and his sisters Kate and Nancy, remember the happy, caring young man who was interested in sports, cars, and, of course, girls. But at 17—following an injury during a hockey game and the unexpected results of a subsequent physician’s visit—darkness fell over Andrew’s bright life: he was diagnosed with neuroblastoma, a fast-moving and fatal cancer.

A testament to his spirit, Andrew took his cancer and treatments in stride. Despite being told that he had just months to live, Andrew pursued new therapies, clinical trials, and his usual, vigorous life. After his initial diagnosis, he was still traveling the world, seeking new treatments and touching dozens of lives along the way with his indomitable spirit and upbeat attitude. ABC’s hit news program, 20/20, even profiled his journey, spotlighting the remarkable young man who encouraged so many.

After the show, "he received tons of fan mail and even offers for dates," remembers his sister, Kate Seligson Friedman, a director of the CSHL Association. "He was so much fun."

Though he was told he would never accomplish it, Andrew made his way to the University of Colorado, where he joined the DTD fraternity. His “brothers” became his second family and could not help but be taken by Andrew’s spirit and zest for living. There, the bonds he formed lasted a lifetime, a lifetime tragically cut short for Andrew by cancer.

After college, though continuing to pursue every available therapy, Andrew eventually succumbed to neuroblastoma, soon after a big black tie party Kate had thrown for his 25th birthday.

Andrew’s father, Alan, who today serves on CSHL’s Board of Trustees, established the Andrew Seligson Foundation to support the Laboratory’s cancer research, and to keep Andrew’s presence and unwavering spirit alive. Today, the foundation supports a postdoctoral fellow in the lab of Scott Lowe, Deputy Director of CSHL’s Cancer Center and a leader in cancer therapy research and pharmacogenomics.

Although 17 years have passed since his death and nearly twenty since Andrew was a “Delt” at the University of Colorado, it soon became clear that his family wasn’t the only group still touched by Andrew’s spirit. On the occasion of their 20th college reunion, his fraternity brothers, led by his close friend Xerxes Bhote, collected a significant sum to support research at CSHL in Andrew’s memory. They had all witnessed Andrew’s stubborn refusal to give in to what, at times, were incapacitating effects of his disease during his years at Colorado, and they wanted to create a tangible, meaningful remembrance of him.

A fantastic tennis player, a good friend, and a great son and brother, Andrew touched many lives in his short 25 years. The bonds of family never die, nor do those of friendship, as evidenced by the many University of Colorado “Dels” who came together to do something, as they simply put it, “for Andrew.”

Jeff Picarello

Photos courtesy of Kate Seligson Friedman

for Andrew

After college, though continuing to pursue every available therapy, Andrew eventually succumbed to neuroblastoma, soon after a big black tie party Kate had thrown for his 25th birthday. His father, Alan, who today serves on CSHL’s Board of Trustees, established the Andrew Seligson Foundation to support the Laboratory’s cancer research, and to keep Andrew’s presence and unwavering spirit alive. Today, the foundation supports a postdoctoral fellow in the lab of Scott Lowe, Deputy Director of CSHL’s Cancer Center and a leader in cancer therapy research and pharmacogenomics.

Although 17 years have passed since his death and nearly twenty since Andrew was a “Delt” at the University of Colorado, it soon became clear that his family wasn’t the only group still touched by Andrew’s spirit. On the occasion of their 20th college reunion, his fraternity brothers, led by his close friend Xerxes Bhote, collected a significant sum to support research at CSHL in Andrew’s memory. They had all witnessed Andrew’s stubborn refusal to give in to what, at times, were incapacitating effects of his disease during his years at Colorado, and they wanted to create a tangible, meaningful remembrance of him.

A fantastic tennis player, a good friend, and a great son and brother, Andrew touched many lives in his short 25 years. The bonds of family never die, nor do those of friendship, as evidenced by the many University of Colorado “Dels” who came together to do something, as they simply put it, “for Andrew.”

Jeff Picarello

Photos courtesy of Kate Seligson Friedman

for Andrew
In his keynote address, Honorary Degree recipient Dr. Matt Ridley, a noted U.K.-based author and visiting scientist at CSHL, echoed Stillman’s sentiments. “We must continuously remind the world of the public good that can come from new knowledge....Some environmentalists in my country and some fundamentalists in yours are determined to paint science as dangerous and unethical. In the debates over genetically modified food and stem cells, they have very nearly managed to contaminate words like ‘gene’ altogether. We must not let them get away with it,” said Ridley.

Honorary degrees were also granted to Dr. Susan Hockfield, a distinguished neuroscientist and the 16th president of M.I.T., and Dr. Tom Maniatis, a professor at Harvard University and best known for pioneering the development and application of recombinant DNA methods. Both Hockfield and Maniatis spent early parts of their careers at Cold Spring Harbor Laboratory.

Watson School Dean Lilian Clark Gann presented the first Winship Herr Award for Excellence & Creativity in Teaching—named in honor of the school’s founding dean—to CSHL scientist Dr. David Spector. Said Spector, “Teaching here is about passing on not only knowledge but also the excitement of science...It is always great to receive an award, but when that award comes from the students, it means that much more as they are the future of science.”

Lisa M. Becker
Marco Mangone
La Sapienza University, Rome
DANA Foundation Fellow
Entering Class of 2000
“Analysis of the HCF-1 basic region and its role in sustaining cell proliferation”

Marco Mangone
La Sapienza University, Rome
DANA Foundation Fellow
Entering Class of 2000
“Analysis of the HCF-1 basic region and its role in sustaining cell proliferation”

Charles Kopec
Rutgers University, New Jersey
Goldberg-Lindsay Fellow
Entering Class of 2001
“AMPA receptor trafficking and their effect on spine enlargement during long-term potentiation”

Santanu Chakraborty
Indian Institute of Technology, Bombay
George A. and Marjorie H. Anderson Fellow
Entering Class of 2000
“Analysis and modeling of neural connectivity in a short-term memory system”

During an April 30 commencement convocation, members of The Watson School of Biological Sciences’s third graduating class—doctoral candidates Santanu Chakraborty, Rebecca Ewald, Charles Kopec, and Marco Mangone and Master of Science students Molly Perkins and Izabela Sujka—were officially equipped to become leaders in science and society.

“Unfortunately in today’s political and ideological climate, science has taken a backseat to ideas, events, and priorities that threaten our way of life and the way we perform science,” said CSHL president Bruce Stillman during his commencement address. “As you embark on a career in science, I hope you will work to bring scientific awareness to the public, to students, and to the government, whenever you may be.”
In his keynote address, Honorary Degree recipient Dr. Matt Ridley, a noted U.K.-based author and visiting scientist at CSHL, echoed Stillman’s sentiments. “We must continuously remind the world of the public good that can come from new knowledge....Some environmentalists in my country and some fundamentalists in yours are determined to paint science as dangerous and unethical. In the debates over genetically modified food and stem cells, they have very nearly managed to contaminate words like ‘gene’ altogether. We must not let them get away with it,” said Ridley.

Honorary degrees were also granted to Dr. Susan Hockfield, a distinguished neuroscientist and the 16th president of M.I.T., and Dr. Tom Maniatis, a professor at Harvard University and best known for pioneering the development and application of recombinant DNA methods. Both Hockfield and Maniatis spent early parts of their careers at Cold Spring Harbor Laboratory.

Watson School Dean Lilian Clark Gann presented the first Winship Herr Award for Excellence & Creativity in Teaching—named in honor of the school’s founding dean—to CSHL scientist Dr. David Spector. Said Spector, “Teaching here is about passing on not only knowledge but also the excitement of science...It is always great to receive an award, but when that award comes from the students, it means that much more as they are the future of science.”

Lisa M. Becker

Marco Mangone

La Sapienza University, Rome
DANA Foundation Fellow
Entering Class of 2000
"Analysis of the HCF-1 basic region and its role in sustaining cell proliferation"
In 1944, Hans Asperger, the Austrian pediatrician for whom Asperger Syndrome is named, suggested that “the autistic personality is an extreme variant of male intelligence...in the autistic individual, the male pattern is exaggerated.” Today, Simon Baron-Cohen of Cambridge University suspects that Asperger was correct and is seeking the cause of autism by using modern methods to test Asperger’s “extreme male brain” theory. Baron-Cohen, professor of Developmental Psychopathology and director of the Autism Research Center in Cambridge, was a participant at an autism meeting at CSHL’s Banbury Center in March, from which he was buttonholed one evening to give a public Cultural Series Lecture in Grace Auditorium.

During his talk, Baron-Cohen described how the results of his psychological, neurological, and hormone research have revealed that sex differences in the brain may indeed be the key to understanding autism.

Baron-Cohen maintains that females and males in the general population have different “brain types” or cognitive styles. Empathizing is the ability to predict another’s feelings and respond appropriately to another’s state of mind. Systemizing is the ability and desire to build systems and determine the rules that govern how they work. The typical female brain, Baron-Cohen said, excels at empathizing whereas the typical male brain excels at systemizing.

Thus, males are more often systemizers and have less developed empathizing abilities. Females generally have the reverse cognitive style. Such gender differences in cognitive styles can be observed early in development, even among day-old newborns, and continue through adulthood, said Baron-Cohen.

Studies show that individuals with autism frequently have narrow interests and become preoccupied with finding out how a system works. For example, they might become obsessed with spinning the wheel of a toy truck or turning light switches on and off. They find it difficult to pick up on non-verbal cues and have trouble making eye contact and understanding other’s emotions. They are more at emphasizing than males in the general population. They have, however, greater skills than typical males to understand systems, to read maps, and to solve physical and mechanical problems. In essence, they display features predicted of an extreme male brain.

What’s more, the fathers, mothers, and even grandfathers of children with autism are more likely to be systemizers, said Baron-Cohen. Magnetic Resonance Imaging (MRI) shows that although patterns of brain activity differ between males and females in the general population, both the mothers and fathers of children with autism have extreme male patterns of brain behavior. Baron-Cohen has evidence that parents of children with autism are more likely to be strong systemizers themselves.

Along those lines, Baron-Cohen is exploring assortative mating, or the tendency of like individuals to be attracted to each other, to understand the role of genetics in autism.

To further explore the genetic basis of autism, Baron-Cohen is measuring the levels of testosterone—a masculizing hormone—in human fetuses, and testing the prediction that elevated fetal testosterone levels correlate with the development of a systemizing cognitive style. The results indicate that fetuses with elevated testosterone levels do indeed tend to develop into children who are extremely good at analyzing systems but have less well developed language and communication skills. Baron-Cohen is now testing if elevated levels of fetal testosterone predict a diagnosis of autism, and if the genes that control testosterone play a role in the cause of autism. If his theory proves correct, it will shed light not only on the mystery of autism but also on the neurobiology of sex differences in the general population, said Marisa Macari.
In 1944, Hans Asperger, the Austrian pediatrician for whom Asperger Syndrome is named, suggested that “the autistic personality is an extreme variant of male intelligence...in the autistic individual, the male pattern is exaggerated.” Today, Simon Baron-Cohen of Cambridge University suspects that Asperger was correct and is seeking the cause of autism by using modern methods to test Asperger’s “extreme male brain” theory. Baron-Cohen, professor of Developmental Psychopathology and director of the Autism Research Center in Cambridge, was a participant at an autism meeting at Cold Spring Harbor Laboratory in March, from which he was buttonholed one evening to give a public, Cultural Series Lecture in Grace Auditorium.

During his talk, Baron-Cohen described how the results of his psychological, neurological, and hormone research have revealed that sex differences in the brain may indeed be the key to understanding autism.

Baron-Cohen maintains that females and males in the general population have different “brain types” or cognitive styles. Empathizing is the ability to predict another’s feelings and respond appropriately to another’s state of mind. Systemizing is the ability and desire to build systems and determine the rules that govern how they work. The typical female brain, Baron-Cohen said, excels at empathy whereas the typical male brain excels at building systems. Thus, males are more often systemizers and have less developed empathizing abilities. Females generally have the reverse cognitive style. Such gender differences in cognitive styles can be observed early in development, even among day-old newborns, and continue through adulthood, said Baron-Cohen.

Studies show that individuals with autism frequently have narrow interests and become preoccupied with finding out how a system works. For example, they might become obsessed with spinning the wheel of a toy truck or turning light switches on and off. They find it difficult to pick up on non-verbal cues and have trouble making eye contact and understanding others’ emotions. They are more at empathizing than males in the general population. They base, however, greater skills than typical males in understanding systems, to read maps, and to solve physical and mechanical problems. In essence they display features predicted of an extreme male brain.

What’s more, the fathers, mothers and even grandparents of children with autism are more likely to be systemizers, said Baron-Cohen. Magnetic Resonance Imaging (MRI) shows that although patterns of brain activity of fitter between males and females in the general population, both the mothers and fathers of children with autism have extreme male pattern of brain behavior. Baron-Cohen has evidence that parents of children with autism are more likely to be strong systemizers themselves. Along those lines, Baron-Cohen is exploring assortative mating or the tendency of like individuals to be attracted to each other, to understand the role of genetics in autism.

To further explore the genetic basis of autism, Baron-Cohen is measuring the levels of testosterone—a masculizing hormone—in human fetuses, and testing the prediction that elevated fetal testosterone levels correlate with the development of a systemizing cognitive style. The results indicate that fetuses with elevated testosterone levels do indeed tend to develop into children who are extremely good at analyzing systems but have less well developed language and communication skills. Baron-Cohen is now testing if elevated levels of fetal testosterone predict a diagnosis of autism, and if the genes that control testosterone play a role in the cause of autism. If his theory proves correct, it will shed light not only on the mystery of autism but also on the neurobiology of sex differences in the general population. —Marisa Macari
Dipping Into the Double Helix

As a walk through virtually any old graveyard in New England will prove, it is nothing new to lose into the 90s or to reach 100. During the last decade, gerontologists and geneticists have marshaled impressive evidence that the genetic cards one drew are at least as important as many of the recognized trends in research. Joining them in the research—published in Nature Structure & Molecular Biology—are婚后, Tina, Patricia Rane, and Greg Horner.

Shelby Cullom Davis Foundation

Kathryn Davis, a 99-year-old interested individual, recently helped the Laboratory create The Davis Family Center for Human Genetics through a $5 million planned gift from the Shelby Cullom Davis Foundation. Research at the new center will focus on improving the diagnosis and treatment of cancer, Parkinson’s disease, autism, schizophrenia, multiple sclerosis, and other genetically based diseases. She made an additional contribution of $400,000 to support RNAi research at CSHL.

For the second time in as many years, a publication by Leonard Jordan Jr. and his colleagues (“Infracted Ingrained” and an RNAi form resurrected human RISC”) has been selected as a “New Hot Paper” by Thomson Scientific’s Essential Science Indicators. New Hot Papers are leading indicators of scientific advance and are likely to signal important new trends in research. Joining them in the research—published in Nature Structure & Molecular Biology—are婚后, Tina, Patricia Rane, and Greg Horner.

Landon & Lavinia Clay

Landon and Lavinia Clay have established a $5 million Erck Gift Endowment to support a Postdoctoral and a Student Fellowship in Biomathematics at CSHL. Landon, a successful venture capital investor, and his wife Lavinia founded the Clay Mathematics Institute in 1998 to encourage gifted individuals to pursue mathematical careers and to recognize outstanding contributions to fundamental research. The Clay Mathematics Institute has now added an additional contribution of $400,000 to support RNAi research at CSHL.

Thomson Scientific’s Essential Science Indicators

For the second time in as many years, a publication by Leonard Jordan Jr. and his colleagues (“Infracted Ingrained” and an RNAi form resurrected human RISC”) has been selected as a “New Hot Paper” by Thomson Scientific’s Essential Science Indicators. New Hot Papers are leading indicators of scientific advance and are likely to signal important new trends in research. Joining them in the research—published in Nature Structure & Molecular Biology—are婚后, Tina, Patricia Rane, and Greg Horner.

Greenetech

To mark its 30th anniversary, Greenetech has invested $2.7 million to expand the establishment of the Greenetech Center for the History of Molecular Biology and Biotechnology in CSHL’s historic Carnegie Building. Among other materials, the expanded facility will house the archival collections of several luminaries of molecular biology including Sydney Brenner, Barbara McClintock, Hermann Muller, and Jim Watson. Scholarly research at the Greenetech Center will focus on an extraordinary period and help ensure that the history of molecular biology and biotechnology are preserved and made accessible to all. Additional support for the center is coming from leading scientific and industrial companies that have also played a central role in this history.

For the second time in as many years, a publication by Leonard Jordan Jr. and his colleagues (“Infracted Ingrained” and an RNAi form resurrected human RISC”) has been selected as a “New Hot Paper” by Thomson Scientific’s Essential Science Indicators. New Hot Papers are leading indicators of scientific advance and are likely to signal important new trends in research. Joining them in the research—published in Nature Structure & Molecular Biology—are婚后, Tina, Patricia Rane, and Greg Horner.

The Strongest Boy in the World

How Genetic Information is Reshaping Our Lives

PHILIP R. REILLY

THE STRONGEST BOY IN THE WORLD

COLD SPRING HARBOR LABORATORY PRESS, 2006

Book Review

Excerpt

Title » The Strongest Boy in the World

How Genetic Information is Reshaping Our Lives

by PHILIP R. REILLY

Publisher » COLD SPRING HARBOR LABORATORY PRESS, 2006

Dipping Into the Double Helix

As a walk through virtually any old graveyard in New England will prove, it is nothing new to lose into the 90s or to reach 100. During the last decade, gerontologists and geneticists have marshaled impressive evidence that the genetic cards one drew are at least as important as many of the recognized environmental factors in slowing or promoting longevity. With these advances, the ideal of someday applying that knowledge to extend the human life span has moved from science fiction to a scientific dream still within possibility.

As a walk through virtually any old graveyard in New England will prove, it is nothing new to lose into the 90s or to reach 100. During the last decade, gerontologists and geneticists have marshaled impressive evidence that the genetic cards one drew are at least as important as many of the recognized environmental factors in slowing or promoting longevity. With these advances, the ideal of someday applying that knowledge to extend the human life span has moved from science fiction to a scientific dream still within possibility.

Dipping Into the Double Helix

As a walk through virtually any old graveyard in New England will prove, it is nothing new to lose into the 90s or to reach 100. During the last decade, gerontologists and geneticists have marshaled impressive evidence that the genetic cards one drew are at least as important as many of the recognized environmental factors in slowing or promoting longevity. With these advances, the ideal of someday applying that knowledge to extend the human life span has moved from science fiction to a scientific dream still within possibility.

Dipping Into the Double Helix

As a walk through virtually any old graveyard in New England will prove, it is nothing new to lose into the 90s or to reach 100. During the last decade, gerontologists and geneticists have marshaled impressive evidence that the genetic cards one drew are at least as important as many of the recognized environmental factors in slowing or promoting longevity. With these advances, the ideal of someday applying that knowledge to extend the human life span has moved from science fiction to a scientific dream still within possibility.

Dipping Into the Double Helix

As a walk through virtually any old graveyard in New England will prove, it is nothing new to lose into the 90s or to reach 100. During the last decade, gerontologists and geneticists have marshaled impressive evidence that the genetic cards one drew are at least as important as many of the recognized environmental factors in slowing or promoting longevity. With these advances, the ideal of someday applying that knowledge to extend the human life span has moved from science fiction to a scientific dream still within possibility.

Dipping Into the Double Helix

As a walk through virtually any old graveyard in New England will prove, it is nothing new to lose into the 90s or to reach 100. During the last decade, gerontologists and geneticists have marshaled impressive evidence that the genetic cards one drew are at least as important as many of the recognized environmental factors in slowing or promoting longevity. With these advances, the ideal of someday applying that knowledge to extend the human life span has moved from science fiction to a scientific dream still within possibility.

Dipping Into the Double Helix

As a walk through virtually any old graveyard in New England will prove, it is nothing new to lose into the 90s or to reach 100. During the last decade, gerontologists and geneticists have marshaled impressive evidence that the genetic cards one drew are at least as important as many of the recognized environmental factors in slowing or promoting longevity. With these advances, the ideal of someday applying that knowledge to extend the human life span has moved from science fiction to a scientific dream still within possibility.

Dipping Into the Double Helix

As a walk through virtually any old graveyard in New England will prove, it is nothing new to lose into the 90s or to reach 100. During the last decade, gerontologists and geneticists have marshaled impressive evidence that the genetic cards one drew are at least as important as many of the recognized environmental factors in slowing or promoting longevity. With these advances, the ideal of someday applying that knowledge to extend the human life span has moved from science fiction to a scientific dream still within possibility.
For the second time in as many years, a postdoctoral scholar by the name of Andrew Viteritti has been elected as a "New Hot Paper" by Thomson Scientific’s Essential Science Indicators. The research, which focuses on improving diagnostic tools for cancer and other genetic disorders, is cited more frequently than 99.9% of all other studies in the numerous journals surveyed. According to Thomson Scientific, New Hot Papers are leading indicators of scientific advance and are likely to signal important new trends in research. Jokingly titled in the research—published in Nature Structural & Molecular Biology—the paper is authored by Joshua-Tor and her colleagues, Niraj Tolia, Fabiola Rivas, and Greg Hannon.

"New Hot Paper" by Thomson

Dr. Packer is Senior Editor of the journal Nature Genetics.
Upcoming Events

July 12
LIABC Women’s Tennis Tournament & Luncheon
Old Westbury Golf & Country Club
Proceeds support LIABC
Free cancer screening
For more information, call 516-367-6923
(Basic data: 4.1.1)

July 15
Walking Tour of Cold Spring Harbor Laboratory
Grace Auditorium, 10 am
Reservations required, call 516-367-6955

July 28
Photography Exhibition Opening Reception
Ryan Brenizer, Photographer-in-Residence
Bush Auditorium, 7 pm
Reservations required, call 516-367-6955
Exhibition: Bush Auditorium, July 25–August 15
Open daily, 9 am–6 pm

August 5
LIABC Lectureship
Cold Spring Harbor Laboratory Beach, 7 pm
Proceeds support LIABC
Free cancer screening
For more information, call 516-367-6923
(Please date August 8)

September 12
Gustavo Santa Luca Lecture
“Prozac’s Target Revealed”
Jeffrey Friedman, M.D., Ph.D.
The Rockefeller University
Grace Auditorium, 7 pm
Reservations required, call 516-367-6955

September 17
“Cruizin’ for a Cure”
Custom and Classic Car Show
Fireman’s Field, Merrick, 9 am–5 pm
Proceeds support LIABC prostate cancer research
For information and registration, call 1-888-LICRUIZIN
or visit www.cruzinforacure.com

September 26
Art Exhibition Opening Reception
“Pertaining to Origins”
Paul Liam Harrison, Artist and Printmaker
Racker Room, Blackford Hall, 7 pm
Reservations required, call 516-367-8455
Exhibition: Bush Fireplace Room, September 26–October 1
Open daily, 9 am–5 pm

Prozac’s Target Revealed

» Seeking the Cause of Autism
» JAZZ at the LAB
» Bringing Bioinformatics to Brazil
» Watson@Google