Cold Spring Harbor Laboratory  
Contact Us | Faculty & Staff Directory
Hiro Furukawa

Associate Professor
Ph.D., The University of Tokyo, 2001


Contact
furukawa@cshl.edu
(516) 367-8872 (p)
  Furukawa Lab Website
The nervous system transmits information by passing chemical signals from one nerve cell to the others.  This signal transmission relies on a variety of proteins to receive and transmit the chemical signals.  My group studies the structure and function of neurotransmitter receptors and ion channels that regulate fundamental neuronal activities.

Hiro Furukawa’s lab studies receptor molecules involved in neurotransmission. Its members mainly focus on the structure and function of NMDA (N-methyl-d-aspartate) receptors—ion
channels that mediate excitatory transmission. Dysfunctional NMDA receptors cause neurological disorders and diseases including Alzheimer’s disease, Parkinson’s disease, schizophrenia, depression, and stroke-related ischemic injuries. The Furukawa lab is working to solve the threedimensional structure of the very large NMDA receptor by dividing it into several domains. They seek to understand the pharmacological specificity of neurotransmitter ligands and allosteric modulators in different subtypes of NMDA receptors at the molecular level. Toward this end, they use cutting-edge techniques in X-ray crystallography to obtain crystal structures of the NMDA receptor domains and validate structure-based functional hypotheses by a combination of biophysical techniques including electrophysiology, fluorescence analysis, isothermal titration calorimetry, and analytical centrifugation. Crystal structures of NMDA receptors serve as a blueprint for creating and improving the design of therapeutic compounds with minimal side effects for treating neurological disorders and diseases. During the last several years, the team discovered and mapped several regulatory sites in specific classes of NMDA receptors, progress that now opens the way to the development of a new potential class of drugs to modulate the receptor activity.

Karakas E, Furukawa H. 2014. Crystal structure of heterotetrameric NMDA receptor ion channel. Science344: 992–997.

Jespersen, A, Tajima, N, Fernandez-Cuervo, G, Garnier-Amblard, EC, and Furukawa H. 2014. Structural Insights into competitive antagonism in NMDA receptors. Neuron. 81: 366–378.

Karakas E, Simorowski N, Furukawa H. 2011. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature. 475: 249–253.

Vance KM, Simorowski N, Traynelis SF, and Furukawa H. 2011. Ligand-specific deactivation time course of GluN1/GluN2D NMDA receptors. Nat. Commun. 2:294 doi: 10.1038/ncomms1295.

Karakas, E., Simorowski, N., and Furukawa H. 2009. Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J28: 3910–3920.

Archived Publications
Stanley Institute
We seek to understand the effect of various genetic mutations in N-methyl-D-aspartate receptors (NMDARs)at the protein level by “visualizing” changes in molecular architecture caused by the mutations. Our structural biology studies serve as molecular blueprints for designing new drugs for neurological disorders involving NMDAR dysfunction.