Cold Spring Harbor Laboratory  
Contact Us | Faculty & Staff Directory
Z. Josh Huang

Ph.D., Brandeis University, 1994

(516) 367-8388 (p)
  Huang Lab Website
We study the developmental assembly and functional organization of neural circuits in the cerebral cortex that process information and guide behavior. We combine molecular, anatomical and physiological approaches, with the entry point from a systematic identification of neuronal cell types using genetically engineered mice. Our study has implications in understanding neuropsychiatric disorders such as schizophrenia and autism.

Josh Huang and colleagues study the assembly and function of neural circuits in the neocortex of the mouse. The neocortex consists of a constellation of functional areas that form a representational map of the external (sensory, social) and internal (visceral, emotional) world. These areas are strategically interconnected into elaborate networks which support dynamic operations that process information and guide intelligent behavior. The group’s overarching hypothesis is that, at the cellular level, cortical processing streams and output channels are mediated by a large set of distinct glutamatergic pyramidal neurons (PyNs), and functional PyN ensembles are regulated by a diverse yet distinct set of GABAergic interneurons (INs). The Huang lab systematically builds cell type genetic tools that integrate a full set of modern techniques for exploring neural circuits. Building on their success in genetic targeting of GABA INs, they have recently extended this effort to PyNs. Their current research program begins to integrate studies of GABA INs and PyNs toward understanding the development and function of specific cortical circuits underlying behavior. Among GABA interneurons, the chandelier cell is one of the most distinctive cell type that controls PyN firing at the axon initial segment. Huang and colleagues are studying the developmental specification of chandelier cells, their activity-dependent circuit integration, and their functional connectivity. Regarding pyramidal neurons, they are systematically characterizing the developmental origin, axon projection, and input connectivity of multiple classes of genetically defined PyN types, focusing on the forelimb motor cortex. They combine a range of approaches that include genetic and viral engineering, cell type gene expression, genetic fate mapping, imaging, electrophysiology, and behavior analysis. With this progress, they begin to integrate their studies in the context of the motor cortex control of volitional forelimb movements and motor learning.

Taniguchi, H. and Lu, J. and Huang, Z. J. (2013) The spatial and temporal origin of chandelier cells in mouse neocortex. Science 339(6115) pp. 70-4.

He, M. and Liu, Y. and Wang, X. and Zhang, M. Q. and Hannon, G. J. and Huang, Z. J. (2012) Cell-Type-Based Analysis of MicroRNA Profiles in the Mouse Brain. Neuron 73(1) pp. 35-48.

Taniguchi, H. and He, M. and Wu, P. and Kim, S. and Paik, R. and Sugino, K. and Kvitsani, D. and Fu, Y. and Lu, J. and Lin, Y. and Miyoshi, G. and Shima, Y. and Fishell, G. and Nelson, S. B. and Huang, Z.  J. (2011) A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex. Neuron 71(6) pp. 995-1013.

Di Cristo, G. and Chattopadhyaya, B. and Kuhlman, S. J. and Fu, Y. and Belanger, M-C. and Wu, C. Z. and Rutishauser, U. and Maffei, L. and Huang, Z. J. (2007) Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity. Nat Neurosci 10(12) pp. 1569-1577.

Ango, F. and di Cristo, G. and Higashiyama, H. and Bennett, V. and Wu, P. and Huang, Z. J. (2004) Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell 119(2) pp. 257-72.

Additional materials of the author at
CSHL Institutional Repository

2015: Special Lecture, Society of Neuroscience Annual Meeting, Chicago

2013: President's Plenary Lecture, American College of Neuropsychopharmacology (ACNP), Florida

2011-2012: Distinguished Investigator, NARSAD-Brain and Behavior Research Foundation

2007–2017: Simon’s Investigator; Simons Foundation Autism Research Initiative

2010: Plenary Lecture, Society of Biological Psychiatry 65th Annual Meeting, New Orleans

2007-2010: Harold & Leila Mathers Foundation Award

2004–2007: McKnight Scholar Award in Neuroscience

2004–2006: EJLB Foundation Award

2002–2005: Pew Scholar Award

2004-2007: March of Dime Birth Defect Foundation Award

2001-2004: Whitehall Foundation Award